S. Minakata et al.
thors (Y.T.) would like to acknowledge support from the Frontier Re-
search Base for Global Young Researchers, Osaka University, on the
Program of MEXT.
Conclusion
We have developed highly selective methods for the synthe-
sis of azafulleroids and aziridinofullerenes under mild condi-
tions by using easily handled N,N-dihaloamides as the key
chemical species. The reactions tolerated various amide
functionalities and allowed isomeric iminofullerenes to be
obtained in high yields. Furthermore, we have demonstrated
that the iminofullerenes reported herein function as good
electron-transporting materials in p–n-heterojunction photo-
voltaic devices.
[1] For comprehensive books and reviews of the reactivity and function-
alization of fullerenes, see: a) A. Hirsch, M. Brettreich, Fullerenes:
Chemistry and Reactions, Wiley-VCH, Weinheim, 2005; b) Fuller-
enes: Chemistry, Physics, and Technology (Eds.: K. M. Kadish, R. S.
Ruoff), Wiley-Interscience, New York, 2000; c) K. Itami, Chem.
108, 3016; e) N. Martꢂn, M. Altable, S. Filippone, A. Martꢂn-Dome-
nech, Synlett 2007, 3077; f) N. Martꢂn, Chem. Commun. 2006, 2093.
[2] For comprehensive reviews of fullerene-based materials, see: a) C.-
Montellano Lꢃpez, A. Mateo-Alonso, M. Prato, J. Mater. Chem.
2011, 21, 1305; c) J. L. Delgado, P.-A. Bouit, S. Filippone, M. ꢄ. Her-
B. M. Illescas, C. M. Atienza, M. Wielopolski, N. Martꢂn, Chem. Soc.
fazi, O. Enger, F. Diederich, Chem. Soc. Rev. 2007, 35, 390; h) F.
Experimental Section
Typical procedure for the synthesis of azafulleroids by using amides and
N-iodosuccinimide: N-Iodosuccinimide (22.5 mg, 0.1 mmol) was added to
a solution of a fullerene (36 mg, 0.05 mmol) and an amide (0.05 mmol) in
o-DCB (25 mL). The resulting mixture was allowed to stir at room tem-
perature for the time indicated in Table 1. After completion of the reac-
tion, the mixture was passed through a short column on a silica gel pad
(3 g), and the solvent was evaporated under reduced pressure. The resi-
due was purified by column chromatography on silica gel.
Compound data for a representative azafulleroid, 1c: Black solid; Rf =
0.34 (1:1 toluene/hexane); 1H NMR (270 MHz, CDCl3): d=8.88 (d, 1H,
J=8.1 Hz), 8.57 (dd, 1H, J=1.4, 7.6 Hz), 8.19 (d, 1H, J=8.1 Hz), 7.98
(d, 1H, J=7.6 Hz), 7.71–7.77 (m, 1H), 7.61–7.70 ppm (m, 2H); 13C NMR
(125 MHz, CDCl3): d=147.9, 147.3, 144.7, 144.4, 144.3, 144.2, 144.14,
144.08, 144.0, 143.71, 143.69, 143.5, 143.3, 143.1, 143.0, 142.9, 142.7, 141.8,
141.7, 140.14, 140.06, 139.8, 138.7, 138.5, 138.4, 137.9, 136.03, 135.99,
134.9, 134.3, 133.54, 133.50, 131.8, 129.1, 128.9, 128.8, 127.3, 125.2 ppm;
FTIR (KBr): n˜ =3434, 1509, 1338, 1164, 1134, 766 cmÀ1
; UV/Vis
(CH2Cl2): lmax =224, 258, 322 nm; HRMS (FAB): m/z calcd for
[5] S. H. Park, C. Yang, S. Cowan, J. K. Lee, F. Wudl, K. Lee, A. J.
C70H7NO2S: 925.0234 [M]+; found: 925.0197.
Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Lan-
gridge-Smith, J. R. A. Millar, J. A. Parkinson, D. W. H. Rankin, A. T.
J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R. Langridge-
j) T. Ishida, K. Tanaka, T. Nogami, Chem. Lett. 1994, 23, 561.
[8] For a theoretical study on the thermal extrusion of N2 from [6,6]-tri-
azoline, see: M. Cases, M. Duran, J. Mestres, N. Martꢂn, M. Solꢇ, J.
Typical procedure for the synthesis of aziridinofullerenes by using N,N-
dibromoamides and NaI: Sodium iodide (7.5 mg, 0.05 mmol) was added
to a solution of a fullerene (36 mg, 0.05 mmol) and an N,N-dibromo-
ACHTUNGTRENNUNGamide (0.05 mmol) in o-DCB (25 mL). The mixture was allowed to stir at
room temperature for the time indicated in Table 4. The solution was
passed through a short column on a silica gel pad (3 g), and the solvent
was evaporated under reduced pressure. The residue was purified by
column chromatography on silica gel.
Compound data for a representative aziridinofullerene, 2d: Black solid;
1
Rf =0.38 (1:1 toluene/hexane); H NMR (270 MHz, CDCl3): d=8.61–8.64
(m, 1H), 8.12–8.15 (m, 1H), 7.96–8.02 ppm (m, 2H); 13C NMR (68 MHz,
CDCl3): d=147.4, 145.4, 145.3, 145.2, 144.6, 144.5, 144.0, 143.6, 143.3,
143.2, 143.1, 142.8, 142.3, 142.1, 141.2, 140.8 (2C), 134.8, 134.1, 133.2,
131.1, 125.7, 80.6 ppm; FTIR (KBr): n˜ =3434, 1539, 1363, 1169, 1121,
526 cmÀ1; UV/Vis (CH2Cl2): lmax =316, 253, 224 nm; HRMS (FAB): m/z
calcd for C66H4N2O4S: 919.9892 [M]+, found: 919.9927.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research on
Innovative Areas (Molecular Activation Directed toward Straightforward
Synthesis) from the Ministry of Education, Culture, Sports, Science, and
Technology (MEXT), Japan. We thank Dr. Takamichi Yokoyama and Dr.
Izuru Takei (Mitsubishi Chemical Group Science and Technology Re-
search Center, Inc.) for their assistance with fabrication of the photovol-
taic devices and measurement of their performance. We also acknowl-
edge fruitful discussions with Dr. Junya Kawai (Mitsubishi Chemical
Group Science and Technology Research Center, Inc). One of the au-
[9] M. R. Banks, J. I. G. Cadogan, I. Gosney, P. K. G. Hodgson, P. R. R.
[10] S. Kuwashima, M. Kubota, K. Kushida, T. Ishida, M. Ohashi, T.
[11] a) M. Okada, T. Nakahodo, M. O. Ishitsuka, H. Nikawa, T. Tsuchiya,
T. Akasaka, T. Fujie, T. Yoshimura, Z. Slanina, S. Nagase, Chem.
Yoshimura, M. O. Ishitsuka, T. Tsuchiya, Y. Maeda, H. Fujihara, T.
&
10
&
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 0000, 00, 0 – 0
ÝÝ
These are not the final page numbers!