932
S. Kii et al.
LETTER
98% ee by capillary GLC analysis [GL SCIENCE CP-CHIRASIL-
DEX CB, 80 kPa, column temp = 150 °C, tR = 52.54 min, tR = 54.63
min] in comparison with the racemic sample.
Table Asymmetric Hetero-Diels–Alder Reaction of Aldehydes and
Danishefsky’s Diene Catalyzed by Chiral Bis-Ti(IV) Complex 1a
Entry Aldehyde (R-CHO)
Condition %Yieldb %eec
(°C, h)
(Config.)
Acknowledgement
1
2
3
4
5
6
7
8
PhCH2CH2CHO
CH3(CH2)4CHO
CH3(CH2)6CHO
PhC CCHO
0, 3
77
57
79
78d
45d
64
60
58
97
This work was supported by a Grant-in-Aid for Scientific Research
on Priority Areas (No. 706: Dynamic Control of Stereochemistry)
and Scientific Research (No. 13853003) from the Ministry of Edu-
cation, Science, Sports and Culture, Japan.
0, 5
95 (S)e
92
0, 5
0, 3
98
References
CH3(CH2)3C CCHO
Ph-CHO
0, 7
95
(1) (a) Kii, S.; Maruoka, K. Tetrahedron Lett. 2001, 42, 1935.
(b) Hanawa, H.; Kii, S.; Maruoka, K. Advanced Synth. Cat.
2001, 343, 57.
(2) Reviews: (a) Boger, D. L.; Weinreb, S. M. Hetero Diels–
Alder Methodology in Organic Synthesis; Academic Press
Inc.: San Diego California, 1987. (b) Jørgensen, K. A.
Angew. Chem., Int. Ed. 2000, 39, 3558. (c) Jørgensen, K.
A.; Johannsen, M.; Yao, S.; Audrain, H.; Thorhauge, J. Acc.
Chem. Res. 1999, 32, 605.
(3) (a) Sellner, H.; Karjalainen, J. K.; Seebach, D. Chem.–Eur.
J. 1996, 7, 2873. (b) Gong, L. Z.; Pu, L. Tetrahedron Lett.
2000, 41, 2327. (c) Oi, S.; Terada, E.; Ohuchi, K.; Kato, T.;
Tachibana, Y.; Inoue, Y. J. Org. Chem. 1999, 64, 8660.
(d) Bercich, M. D.; Cambie, R. C.; Rutledge, P. S. Aust. J.
Chem. 1999, 52, 851. (e) Yao, S.; Roberson, M.; Reichel, F.;
Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1999, 64,
6677. (f) Jørgensen, K. A.; Johannsen, M.; Yao, S. L.;
Audrain, H.; Thorhauge, J. Accounts Chem. Res. 1999, 32,
605. (g) Thorhauge, J.; Johannsen, M.; Jørgensen, K. A.
Angew. Chem. Int. Ed. 1998, 37, 2404. (h) Yao, S. L.;
Johannsen, M.; Audrain, H.; Hazell, R. G.; Jørgensen, K. A.
J. Am. Chem. Soc. 1998, 120, 8599. (i) Yao, S.; Johannsen,
M.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 1997,
2345. (j) Ghosh, A. K.; Mathivanan, P.; Cappiello, J.
Tetrahedron Lett. 1997, 38, 2427. (k) Graven, A.;
Johannsen, M.; Jørgensen, K. A. Synlett 1997, 79.
(l) Hanamoto, T.; Furuno, H.; Sugimoto, Y.; Inanaga, J.
Chem. Commun. 1996, 20, 2373.
(4) The hetero-Diels–Alder reaction of phenylpropargyl
aldehyde 3 (R = C CPh) proceeded smoothly with a chiral
mono-Ti(IV) complex 2 (10 mol%) to give adduct 4 (R = C
CPh) in 47% yield. In contrast, however, the reactivity of the
hetero-Diels–Alder reaction of benzaldehyde 3 (R = Ph) are
lowered (e.g., 29% yield) under similar reaction condition
with a chiral mono-Ti(IV) 2 (10 mol%).
(5) The absolute configuration of the aldol 5 was determined to
be S by correlation to the authentic sample according to the
literature: Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.;
Mukaiyama, T. J. Am. Chem. Soc. 1991, 113, 4247.
(6) Reviews: (a) Carreira, E. M. In Comprehensive Asymmetric
Catalysis, Vol. 3; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.,
Eds.; Springer: Heidelberg, 1999, 998. (b) Mahrwald, R.
Chem. Rev. 1999, 99, 1095. (c) Gröger, H.; Vogl, E. M.;
Shibasaki, M. Chem. Eur. J. 1998, 7, 1137. (d) Nelson, S.
G. Tetrahedron: Asymmetry 1998, 9, 357. (e) Bach, T.
Angew. Chem. Int. Ed. Engl. 1994, 33, 417.
0, 3
71 (S)e
64
(CH3)2CHCHO
0, 5
CH3(CH2)3CH=CHCHO 0, 5
69
a The hetero-Diels–Alder reaction of aldehyde and Danishefsky’s
diene (2 equiv) was carried out in the presence of chiral bis-Ti(IV)
catalyst 1 (10 mol%) in CH2Cl2 under the given reaction conditions.
b Isolated yield.
c Determined by capillary GLC analysis using GL SCIENCE
CP-CHIRASIL-DEX CB.
d Use of 1.2 equiv of Danishefsky’s diene.
e See ref.7
(4 H, d, J = 8.1 Hz, binaphthyl-H), 7.60 (4 H, d, J = 8.7 Hz, binaph-
thyl-H), 6.89 (4 H, br s, binaphthyl-H), 6.51 (2 H, dd, J = 2.1, 8.4
Hz, benzophenone 5,5 -CH), 6.29 (2 H, d, J = 2.1 Hz, benzophenone
3,3 -CH), 4.51 [4 H, br s, TiOCH(CH3)2], 4.07 [4 H, br s,
HOCH(CH3)2], 1.88 (4 H, s, i-PrOH), 1.19 [36 H, br d, J = 6.0 Hz,
TiOCHCH3 and HOCH(CH3)2], 1.17 (12 H, br d, J = 6.0 Hz,
TiOCHCH3); 13C NMR (CD2Cl2) 199.46 (C=O), 158.79 (binaph-
thoxy C-O), 149.26 (benzophenone 2,2 -CN), 144.49, 138.00,
134.36, 132.90, 129.89, 128.70, 128.00, 126.94, 126.40, 125.29,
123.18, 121.02, 120.20, 118.18, 116.39, 114.92, 80.70 [Ti-
OCH(CH3)2], 71.30 (CPh3), 64.20 [HOCH(CH3)2], 24.86
[CH(CH3)2], 24.78 [CH(CH3)2]; IR (CH2Cl2) 3609, 3356, 2972,
1614, 1591, 1560, 1504, 1464, 1427, 1366, 1237, 1225, 1163, 1130,
1022, 1001, 951, 887, 818, 772 cm–1.
A
solution of 2,2 -bis(tritylamino)-4,4 -dichlorobenzophenone
(38.3 mg, 0.05 mmol) in CH2Cl2 (1 mL) was carefully degassed and
then treated with Ti(i-PrO)4 (30 L, 0.1 mmol) at room temperature
under argon. After 1 h, (S)-binaphthol (28.6 mg, 0.1 mmol) was
added at room temperature, and the mixture was stirred there for 15
h. The solution was cooled to –15 °C, and treated sequentially with
phenylpropargyl aldehyde (61 L, 0.5 mmol) and Danishefsky’s di-
ene (117 L, 0.6 mmol) at –15 °C. The whole mixture was allowed
to warm to 0 °C and stirred there for 5 h. The reaction mixture was
quenched by saturated NaHCO3, extracted with CH2Cl2, and the or-
ganic extracts were dried over Na2SO4. After evaporation of sol-
vents, the residual oil was diluted with THF (5 mL) and treated with
aqueous 1 N HCl (1 mL) at 0 °C for 30 min. With usual work-up,
the crude products were extracted with ether and the organic ex-
tracts were dried over Na2SO4. Evaporation of solvents and purifi-
cation of the residue by column chromatography on silica gel
(diethyl ether–hexane = 1:2) gave 2-(2-phenylethynyl)-2,3-dihy-
dro-4H-pyran-4-one 4 (R = C CPh) as a colorless oil (77 mg, 78%
yield). The enantiomeric purity of the product was determined to be
(7) Schaus, E. S.; Brånalt, J.; Jacobsen, E. N. J. Org. Chem.
1998, 63, 403.
Synlett 2002, No. 6, 931–932 ISSN 0936-5214 © Thieme Stuttgart · New York