Brief Articles
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 4 1223
(10) Ren, J.; Milton, J.; Weaver, K. L.; Short, S. A.; Stuart, D. I.; Stammers,
D. K. Structural Basis for the Resilience of Efavirenz (DMP-266) to
Drug Resistance Mutations in HIV-1 Reverse Transcriptase. Structure
2000, 8, 1089–1094.
(11) Pelemans, H.; Esnouf, R.; De Clercq, E.; Balzarini, J. Mutational
Analysis of Trp-229 of Human Immunodeficiency Virus Type 1
Reverse Transcriptase (RT) Identifies This Amino Acid Residue as a
Prime Target for the Rational Design of New Non-Nucleoside RT
Inhibitors. Mol. Pharm. 2000, 57, 954–960.
(12) Fattorusso, C.; Gemma, S.; Butini, S.; Huleatt, P.; Catalanotti, B.;
Persico, M.; De Angelis, M.; Fiorini, I.; Nacci, V.; Ramunno, A.;
Rodriquez, M.; Greco, G.; Novellino, E.; Bergamini, A.; Marini, S.;
Coletta, M.; Maga, G.; Spadari, S.; Campiani, G. Specific Targeting
Highly Conserved Residues in the HIV-1 Reverse Transcriptase Primer
Grip Region. Design, Synthesis and Biological Evaluation of Novel,
Potent and Broad Spectrum NNRTIs with Antiviral Activity. J. Med.
Chem. 2005, 48, 7153–7165.
(13) (a) Jones, L. H.; Allan, G.; Corbau, R.; Hay, D.; Middleton, D. S.;
Mowbray, C. E.; Newman, S.; Perros, M.; Randall, A.; Vuong, H.;
Webster, R.; Westby, M.; Williams, D. Optimization of 5-aryloxy-
imidazole non-nucleoside reverse transcriptase inhibitors. ChemMed-
Chem 2008, 3, 1756–1762. (b) Jones, L. H.; Randall, A.; Barba, O.;
Selby, M. Synthetic chemistry-led creation of a difluorinated biaryl
ether non-nucleoside reverse transcriptase inhibitor. Org. Biomol.
Chem. 2007, 5, 3431–3433. (c) Jones, L. H.; Dupont, T.; Mowbray,
C. E.; Newman, S. A Concise and Selective Synthesis of Novel
5-Aryloxyimidazole NNRTIs. Org. Lett. 2006, 8, 1725–1727. (d)
Jones, L. H.; Mowbray, C. E. A concise synthesis of trifluormethyl-
substituted 4-aryloxy pyrazoles. Synlett 2006, 9, 1404–1406.
(14) Rekker, R. The Hydrophobic Fragmental Constant; Elsevier: Am-
sterdam, 1977.
concentrated under reduced pressure. The residue was purified by
FCC (silica gel, 20% EtOAc/toluene) to yield the title compound
as a white solid (56 mg, 56%). H NMR (500 MHz, DMSO-d6)
13.01 (s, 1H), 8.19 (s, 1H), 7.88 (s, 2H), 7.45 (dd, J 9.3, 3.8 Hz,
1H), 7.41 (dd, J 9.6, 9.3 Hz, 1H), 2.30 (s, 3H). 13C NMR (125
MHz, DMSO-d6) 158.2, 147.6, 140.0, 139.5, 131.2, 130.5, 123.4,
116.5, 114.4, 109.2, 13.1. C-H correlation experiments included
in Supporting Information. 19F NMR (376 MHz, CDCl3) -141.0.
APCI MS m/z 293 [M + H]+. LCMS CI m/z 293 [M + H]+ >95%.
Anal. (C16H9FN4O) C, H, N.
1
Acknowledgment. We thank Michael Kinns and Torren
Peakman for NOE and C-H correlation NMR experiments. We
also thank Ian Burr, Alex Martin, and Amy Thomas for
determining the potencies of these compounds and Iain Gardner
for proof reading this manuscript.
Supporting Information Available: Detailed syntheses of all
compounds (except 1, 5, and 6), NOE and C-H correlation spectra
of 5, 6, 14, combustion analyses of 1-8 and 16. Procedures for
the enzyme and antiviral assays and molecular modeling details.
X-ray diffraction data for 6 with K103N RT. Structures of efavirenz
and capravirine with RT and overlays of compound 6 with efavirenz
and capravirine. This material is available free of charge via the
(15) Bu, H.-Z.; Pool, W. F.; Wu, E. Y.; Raber, S. R.; Amantea, M. A.;
Shetty, B. V. Metabolism and excretion of capravirine, a new non-
nucleoside reverse transcriptase inhibitor, alone and in combination
with ritonavir in healthy volunteers. Drug Metab. Dispos. 2004, 32,
689.
(16) Evans, D. C.; Watt, A. P.; Nicoll-Griffith, D. A.; Baille, T. A. Drug-
Protein Adducts: An Industry Perspective on Minimizing the Potential
for Drug Bioactivation in Drug Discovery and Development. Chem.
Res. Toxicol. 2004, 17, 3–16.
(17) Kalgutkar, A. S.; Gardner, I.; Obach, R. S.; Shaffer, C. L.; Callegari,
E.; Henne, K. R.; Mutlib, A. E.; Dalvie, D. K.; Lee, J. S.; Nakai, Y.;
O’Donnell, J. P.; Boer, J.; Harriman, S. P. A comprehensive listing
of bioactivation pathways of organic functional groups. Curr. Drug
Metab. 2005, 6, 161–225.
(18) Coordinates have been deposited with the PDB and have the assigned
code 2JLE.
(19) The crystallographic overlay of 6 with capravirine and efavirenz fits
perfectly the predicted binding mode: see Supporting Information.
(20) Tucker, T. J.; Saggar, S.; Sisko, J. T.; Tynebor, R. M.; Williams, T. M.;
Felock, P. J.; Flynn, J. A.; Lai, M.-T.; Liang, Y.; McGaughey, G.;
Liu, M.; Miller, M.; Moyer, G.; Munshi, V.; Perlow-Poehnelt, R.;
Prasad, S.; Sanchez, R.; Torrent, M.; Vacca, J. P.; Wan, B.-L.; Yan,
Y. The design and synthesis of diaryl ether second generation HIV-1
non-nucleoside reverse transcriptase inhibitors (NNRTIs) with en-
hanced potency versus key clinical mutations Bioorg. Med. Chem.
Lett. 2008, 18, 2959-2966. These authors observed a notable reduction
in potency for their lead compound against the clinically rare mutation
Y181L, presumably due to interactions between the compound and
the Y188 residue. We cannot rule out a similar mutant vulnerability
as we have not measured Y188 mutant potencies.
(21) Ren, J.; Chamberlain, P. P.; Stamp, A.; Short, S. A.; Weaver, K. L.;
Romines, K. R.; Hazen, R.; Freeman, A.; Ferris, R. G.; Andrews,
C. W.; Boone, L.; Chan, J. H.; Stammers, D. K. Structural basis for
the improved drug resistance profile of new generation benzophenone
non-nucleoside HIV-1 reverse transcriptase inhibitors. J. Med. Chem.
2008, 51, 5000–5008.
References
(1) UNAIDS/WHO UNAIDS/WHO 2007 AIDS Epidemic Update, 2007.
(2) De Clercq, E. Non-Nucleoside Reverse Transcriptase Inhibitors
(NNRTIs): Past, Present and Future. Chem. BiodiVersity 2004, 1, 44–
64.
(3) Bacheler, L.; Jeffrey, S.; Hanna, G.; D’Aquila, R.; Wallace, L.; Logue,
K.; Cordova, B.; Hertogs, K.; Larder, B.; Buckery, R.; Baker, D.;
Gallagher, K.; Scarnati, H.; Tritch, R.; Rizzo, C. Genotypic Correlates
of Phenotypic Resistance to Efavirenz in Virus Isolates from Patients
Failing Non-Nucleoside Reverse Transcriptase Inhibitor Therapy.
J. Virol. 2001, 75, 4999–5008.
(4) Haubrich, R.; Gubernick, S.; Yasothan, U.; Kirkpatrick, P. Etravirine.
Nat. ReV. Drug DiscoVery 2008, 7, 287.
(5) Fujiwara, T.; Sato, A.; El-Farrash, M.; Miki, S.; Abe, K.; Isaka, Y.;
Kodama, M.; Wu, Y.; Chen, L. B.; Harada, H.; Sugimoto, H.;
Hatanaka, M.; Hinumi, Y. S-1153 Inhibits Replication of Known Drug-
Resistant Strains of Human Immunodeficiency Virus Type 1. Anti-
microb. Agents Chemother. 1998, 42, 1340–1345.
(6) Viegas-Junior, C.; Danuello, A.; Bolzani, V.; Barreiro, E. J.; Fraga,
C. A. M. Molecular Hybrization: A Useful Tool in the Design of New
Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852.
(7) Boehm, H.-J.; Boehringer, M.; Bur, D.; Gmuender, H.; Huber, W.;
Klaus, W.; Kostrewa, D.; Kuehne, H.; Luebbers, T.; Meunier-Keller,
N.; Mueller, F. Novel Inhibitors of DNA Gyrase: 3D Structure Based
Biased Needle Screening, Hit Validation by Biophysical Methods, and
3D Guided Optimization. A Promising Alternative to Random
Screening. J. Med. Chem. 2000, 43, 2664–2674.
(8) Bobik, A.; Holder, G. M.; Ryan, A. Inhibitors of Hepatic Mixed
Function Oxidase. 3. Inhibition of Hepatic Microsomal Aniline
Hydroxylase and Aminopyrine Demethylase by 2,6- and 2,4-Dihy-
droxyphenyl Alkyl Ketones and Related Compounds. J. Med. Chem.
1977, 20, 1194–1199.
(9) Ren, J.; Nichols, C.; Bird, L. E.; Fujiwara, T.; Sugimoto, H.; Stuart,
D. I.; Stammers, D. K. Binding of the Second Generation Non-
Nucleoside Inhibitor S-1153 to HIV-1 Reverse Transcriptase Involves
Extensive Main Chain Hydrogen Bonding. J. Biol. Chem. 2000, 275,
14316–14320.
JM801322H