SHORT COMMUNICATION
[4] T. Yamamoto, K. Igarashi, S. Komiya, A. Yamamoto, J. Am.
Chem. Soc. 1980, 102, 7448–7456.
Conclusions
[5] M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E.
Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510–8537; Angew.
Chem. 2011, 123, 8662.
The results presented show that halogenolysis of nickela-
lactones provides a means of synthetically elaborating or-
ganic fragments derived from alkene/CO2 coupling and trig- [6] a) A. M. Castaño, A. M. Echavarren, Organometallics 1994,
gering their release from the Ni center. These reactions pro-
ceed by halogen attack on the Ni–C bond to install Cl, Br,
13, 2262–2268; b) A. M. Echavarren, A. M. Castaño, Tetrahe-
dron 1995, 51, 2369–2378; c) A. M. Echavarren, A. M. Cas-
taño, Adv. Met.-Org. Chem. 1988, 6, 1–47.
or I groups at the C terminus of the fragment. Subsequent
[7] a) R. Fischer, B. Schönecker, D. Walther, Synthesis 1993, 1267–
oxidation of the nickel center induces reductive elimination,
providing the anhydride products. Whether this latter step
can be generalized to outer-sphere processes is a key ques-
tion in the development of catalytic systems involving
nickelalactones and is under investigation.
1270; b) J. Langer, M. Gärtner, H. Görls, D. Walther, Synthesis
2006, 2697–2706.
[8] E. M. O’Brien, E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2003,
125, 10498–10499.
[9] a) H. Hoberg, A. Ballesteros, J. Organomet. Chem. 1991, 411,
C11–C18; b) J. Dong, T. J. Schmeier, P. G. Williard, N. Hazari,
W. H. Bernskoetter, Organometallics 2013, 32, 2152–2159; c) D.
Jin, P. G. Williard, N. Hazari, W. H. Bernskoetter, Chem. Eur.
J. 2014, 20, 3205–3211.
[10] a) C. Bruckmeier, M. W. Lehenmeier, R. Reichardt, S. Vagin,
B. Rieger, Organometallics 2010, 29, 2199–2202; b) S. Y. T. Lee,
M. Cokoja, M. Drees, Y. Li, J. Mink, W. A. Herrmann, F. E.
Kühn, ChemSusChem 2011, 4, 1275–1279.
[11] M. L. Lejkowski, R. Lindner, T. Kageyama, G. É. Bódizs, P. N.
Plessow, I. B. Müller, A. Schäfer, F. Rominger, P. Hofmann, C.
Futter, S. A. Schunk, M. Limbach, Chem. Eur. J. 2012, 18,
14017–14025.
Experimental Section
Experimental details and spectroscopic data are in the Supporting
Information.
CCDC-1019252 [for 2·2(CH2Cl2)] contains the supplementary crys-
tallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[12] a) K. Koo, G. L. Hillhouse, A. L. Rheingold, Organometallics
1995, 14, 456–460; b) K. Koo, G. L. Hillhouse, Organometallics
1995, 14, 4421–4423.
Supporting Information (see footnote on the first page of this arti-
[13] P. S. Jarrett, P. J. Sadler, Inorg. Chem. 1991, 30, 2098–2104.
[14] While only 2.67 equiv. of X2 are required to form the products
in Scheme 1, it was observed experimentally that 3 equiv. are
required to completely consume 1. A small amount of unchar-
acterized insoluble white solid is also formed in this reaction,
which may explain this difference. It is also possible that some
[(dppe)NiBr3] is formed.
[15] a) S. S. Sandhu, R. S. Sandhu, Inorg. Chim. Acta 1972, 6, 383–
386; b) F. Mani, M. Bacci, Inorg. Chim. Acta 1972, 6, 487–490.
[16] L. R. Gray, S. J. Higgins, W. Levason, M. Webster, J. Chem.
Soc., Dalton Trans. 1984, 459–467.
cle): Experimental details and spectroscopic data.
Acknowledgments
This work was supported by the US National Science Foundation
(CHE-0911180 and CHE-1048528) and the US Department of En-
ergy (grant DE-FG02-07-ER15910 to M. D. H.).
[1] a) H. Hoberg, D. Schaefer, J. Organomet. Chem. 1983, 251,
C51–C53; b) H. Hoberg, D. Schaefer, G. Burkhart, C. Krüger,
M. J. Romäo, J. Organomet. Chem. 1984, 266, 203–224; c) H.
Hoberg, Y. Peres, C. Krüger, Y.-H. Tsay, Angew. Chem. Int. Ed.
Engl. 1987, 26, 771–773; Angew. Chem. 1987, 99, 799; d) H.
Hoberg, A. Ballesteros, A. Sigan, C. Jegat, A. Milchereit, Syn-
thesis 1991, 395–398.
[2] a) R. Fischer, B. Nestler, H. Schütz, Z. Anorg. Allg. Chem.
1989, 577, 111–114; b) A. M. Castaño, A. M. Echavarren, Tet-
rahedron Lett. 1990, 31, 4783–4786; c) R. Fischer, D. Walther,
G. Bräunlich, B. Undeutsch, W. Ludwig, J. Organomet. Chem.
1992, 427, 395–407; d) R. Fischer, D. Walther, R. Kempe, J.
Sieler, B. Schönecker, J. Organomet. Chem. 1993, 447, 131–136.
[3] a) J. Langer, R. Fischer, H. Görls, D. Walther, J. Organomet.
Chem. 2004, 689, 2952–2962; b) R. Fischer, J. Langer, A. Mal-
assa, D. Walther, H. Görls, G. Vaughan, Chem. Commun. 2006,
2510–2512.
[17] The organic products are likely derived from C–C coupling of
1 and the halo anhydride.
[18] K. Muto, J. Yamaguchi, A. Lei, K. Itami, J. Am. Chem. Soc.
2013, 135, 16384–16387.
[19] I. M. Angulo, E. Bouwman, M. Lutz, P. W. Mul, A. L. Spek,
Inorg. Chem. 2001, 40, 2073–2082.
[20] a) C. Amatore, A. Jutand, M. A. M’Barki, Organometallics
1992, 11, 3009–3013; b) C. Amatore, A. Jutand, A. Thuilliez,
Organometallics 2001, 20, 3241–3249; c) C. Bianchini, A. Meli,
W. Oberhauser, Organometallics 2003, 22, 4281–4285.
[21] a) D. L. Hughes, R. A. Reamer, J. Org. Chem. 1996, 61, 2967–
2971; b) P. J. Harvey, M. von Itzstein, I. D. Jenkins, Tetrahe-
dron 1997, 53, 3933–3942; c) J. McNulty, A. Capretta, V. Larit-
chev, J. Dyck, A. J. Robertson, Angew. Chem. Int. Ed. 2003, 42,
4051–4054; Angew. Chem. 2003, 115, 4185.
Received: October 6, 2014
Published Online: October 21, 2014
Eur. J. Inorg. Chem. 2014, 5491–5494
5494
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim