importantly, incorporation of this residue can be easily achieved
at any position, including the C-terminus. Furthermore, the
current labeling technique is orthogonal to earlier developed
methods based on N-terminal labeling or incorporation of
protected lysine derivatives. For this and the previous reason,
the current method offers attractive opportunities for the
straightforward synthesis of doubly labeled peptides which
are often used in FRET based screening strategies.
We thank the FWO Vlaanderen (project 1.5.146.06) and
Ghent University (GOA 01G01507 and BOF 01D29405) for
financial support.
Notes and references
1 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., 2002, 114, 2708–2711 (Angew. Chem., Int. Ed.,
2002, 41, 2596–2599).
2 H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8,
1128–1137.
Scheme 3 Labeling and pyrenylpyrrole formation on Rink amide
3 J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36,
1249–1262.
AM resin.
4 X. H. Ning, J. Guo, M. A. Wolfert and G. J. Boons, Angew.
Chem., 2008, 120, 2285–2287 (Angew. Chem., Int. Ed., 2008, 47,
2253–2255).
5 D. P. Humphreys, S. P. Heywood, A. Henry, L. Ait-Lhadj,
P. Antoniw, R. Palframan, K. J. Greenslade, B. Carrington,
D. G. Reeks, L. C. Bowering, S. West and H. A. Brandt, Protein
Eng., Des. Sel., 2007, 20, 227–234.
6 V. Gauvreau, P. Chevallier, K. Vallieres, E. Petitclerc,
R. C. Gaudreault and G. Laroche, Bioconjugate Chem., 2004, 15,
1146–1156.
7 J. Kalia and R. T. Raines, Bioorg. Med. Chem. Lett., 2007, 17,
6286–6289.
Table 2 Labeling tests on functionalized resins
Entry
Peptide
Resina
Purityb
1
2
3
Ac–FurAla–Ala–Ala–Gly
Fur–Ala–Cys(StBu)–Gly
Fur–Ala–Met–Gly
R
R
R
R
R
R
R
W
W
W
W
80%
70%
85%
68%
80%
64%
78%
93%
79%
80%
71%
4
5
Fur–Ala–Arg(Pbf)–Gly
Fur–Ala–Ser(tBu)–Gly
6
7
Fur–Ala–Trp(Boc)–Gly
Fur–Ala–Tyr(tBu)–Gly
8
9
10
11
Fur–Phe–Gln(Trt)–Gly–Ile–Ile
Fur–Ile–Leu–Pro–Glu(tBu)–Ile
Fur–Ala–His(Trt)–Asn(Trt)–Leu–Ala
Ac–Leu–FurAla–Gly–Lys(Boc)–Val
8 G. A. Lemieux and C. R. Bertozzi, Trends Biotechnol., 1998, 16,
506–513.
9 S. I. Al-Gharabli, S. T. A. Shah, S. Weik, M. F. Schmidt,
J. R. Mesters, D. Kuhn, G. Klebe, R. Hilgenfeld and
J. Rademann, ChemBioChem, 2006, 7, 1048–1055.
10 I. A. Kozlov, P. C. Melnyk, K. E. Stromsborg, M. S. Chee,
D. L. Barker and C. F. Zhao, Biopolymers, 2004, 73, 621–630.
11 J. M. Heldt, N. Fischer-Durand, M. Salmain, A. Vessieres and
G. Jaouen, Eur. J. Org. Chem., 2007, 5429–5433.
12 K. F. Geoghegan and J. G. Stroh, Bioconjugate Chem., 1992, 3,
138–146.
13 P. Johannesson, G. Lindeberg, W. M. Tong, A. Gogoll, A. Karlen
and A. Hallberg, J. Med. Chem., 1999, 42, 601–608.
14 T. Groth and M. Meldal, J. Comb. Chem., 2001, 3, 45–63.
15 J. C. Spetzler and T. Hoeg-Jensen, Tetrahedron Lett., 2002, 43,
2303–2306.
16 M. Paris, C. Douat, A. Heitz, W. Gibbons, J. Martinez and
J. A. Fehrentz, Tetrahedron Lett., 1999, 40, 5179–5182.
17 S. Halila, T. Velasco, P. De Clercq and A. Madder, Chem.
Commun., 2005, 936–938.
18 P. J. A. Weber, J. E. Bader, G. Folkers and A. G. Beck-Sickinger,
Bioorg. Med. Chem. Lett., 1998, 8, 597–600.
19 S. J. Bark, S. Schmid and K. M. Hahn, J. Am. Chem. Soc., 2000,
122, 3567–3573.
20 N. Koglin, M. Lang, R. Rennert and A. G. Beck-Sickinger,
J. Med. Chem., 2003, 46, 4369–4372.
21 A. M. Song, X. B. Wang, J. H. Zhang, J. Marik, C. B. Lebrilla and
K. S. Lam, Bioorg. Med. Chem. Lett., 2004, 14, 161–165.
22 A. Chersi, S. Ferracuti, G. Falasca, R. H. Butler and D. Fruci,
Anal. Biochem., 2006, 357, 194–199.
23 C. W. Lin and A. Y. Ting, J. Am. Chem. Soc., 2006, 128, 4542.
24 C. J. Chapman, A. Matsuno, C. G. Frost and M. C. Willis, Chem.
Commun., 2007, 3903–3905.
a
b
R: Rink amide AM resin; W: Wang resin. As determined from the
crude chromatogram.
expected. Mechanistically, attack of the amine on the enone
functionality is possible, yielding a cyclized product which can
aromatize upon loss of H2O (see Scheme 3). The structure of
1
the obtained material was confirmed by H-NMR analysis of
the cleaved and isolated peptide 8 (see ESIw). Upon NaBH4
treatment of the resin before cleavage, pyrenylpyrrole forma-
tion was suppressed and the labeled peptide can be cleaved as
the aminopyrene derivative.
To demonstrate the scope of this approach in a more
general context, a series of peptides was made, incorporating
different functionalized amino acids (see Table 2). Incorpora-
tion of an internal furan moiety (using N-Fmoc-furylalanine)
evenly provided labeled peptides in good yield. As for labeling
using amines other than aminopyrene, peptides labeled with
7-amino-4-methylcoumarine have been generated with similar
purity (see ESIw).
In summary we have developed a novel strategy for site-
selective fluorescent labeling on solid phase via transformation
of an incorporated furan moiety into an aldehyde functionality.
Selective oxidation of the furan moiety can be conducted using
3 equiv. of NBS and releases the caged electrophilic keto-enal at
any required position in very short time. The methodology
is very straightforward in terms of the building blocks
used (commercially available N-Fmoc-2-furylalanine). More
25 B. Witkop, Adv. Protein Chem., 1961, 16, 221–321.
26 Y. Kwon, K. Welsh, A. R. Mitchell, J. A. Camarero and
A. R. Mitchell, Org. Lett., 2004, 3801–3804.
27 J. A. Camarero, B. J. Hackel, J. J. de Yoreo and A. R. Mitchell,
J. Org. Chem., 2004, 4145–4151.
ꢀc
This journal is The Royal Society of Chemistry 2009
342 | Chem. Commun., 2009, 340–342