Reactions of 4-Methylene-2-oxazolidinones with Benzonitrile Oxide
437
1662, 1599, 1391. δH (400 MHz, CDCl3) 7.52–7.20 (10H, m,
Ar), 3.47 (1H, d, J 18.3, C4–Ha), 3.23 (1H, d, J 18.3, C4–Hb),
2.50–2.35 (1H, m, cy), 2.10–1.95 (1H, m, cy), 1.95–1.60 (6H,
m, cy), 1.55–1.40 (1H, m, cy) and 1.40–1.10 (1H, m, cy). δC
(50 MHz, CDCl3) 156.2 (C=N), 155.0 (C=O), 134.1 (ArC),
130.7, 129.5, 128.8, 128.7 (ArCH), 128.3 (ArC), 128.0, 126.4
(ArCH), 105.0 (C5), 85.5 (C8), 37.0, 33.9, 29.3, 24.9, 21.9, and
21.8 (C4 and cy).
is available from the authors, or until June 2013, the Australian
Journal of Chemistry.
Acknowledgement
The authors wish to thank Craig Forsyth for the X-ray structure determina-
tions, and Karen Jarvis for technical assistance.
References
(5S*,9S*)- and (5S*,9R*)-9-Ethyl-9-methyl-3,6-diphenyl-
1,8-dioxa-2,6-diazaspiro[4.4]non-2-ene-7-one 6f
[1] C. J. Easton, C. M. M. Hughes, G. P. Savage, G. W. Simpson, Adv.
Heterocycl. Chem. 1994, 60, 261.
Prepared on a 2.5-mmol scale to return the crude product (dr
5:1), which was purified by flash column chromatography,
eluting with 4:1 → 1:1 petrol:EtOAc gradient to return isox-
azoline 6f as a colourless solid (980 mg, 58% as a mixture
of diastereomers). Recrystallization from ethanol returned the
major diastereomer (5S*,9S*)-6f as colourless crystals, mp
135.8–137.8◦C. (Found: C 71.2, H 6.0, N 8.4, [M+] 336.1467.
C20H20N2O3 requires C 71.4, H 6.0, N 8.3%, [M+] 336.1474).
νmax/cm−1 (CHCl3 solution, NaCl disc) 1757, 1599, 1498, 1371.
δH (200 MHz, CDCl3) 7.50–7.20 (10H, m, Ar), 3.45 (1H, d, J
18.2, C4–Ha), 3.24 (1H, d, J 18.2, C4–Hb), 1.95–1.73 (2H, m,
CH3CH2), 1.58 (3H, s, CH3) and 1.15 (3H, t, J 7.3, CH3CH2).
δC (50 MHz, CDCl3) 156.2 (C=N), 155.0 (C=O), 134.0, 130.6,
129.5, 128.8, 128.5, 128.3, 127.6, 126.3 (Ar), 104.6 (C5), 86.5
(C8), 37.8(C4), 31.2(CH3), 18.8(CH2CH3), and8.0(CH2CH3).
The minor diastereomer (5S*,9R*)-6f could not be isolated
from the major diastereomer and the NMR spectra were assigned
by subtraction. δH (200 MHz, CDCl3) 7.50–7.20 (10H, m, Ar),
4.16 (1H, d, J 2.8, C4–Ha), 4.00 (1H, d, J 2.8, C4–Hb), 2.20–
2.00 (2H, m, CH3CH2), 1.56 (3H, s, CH3) and 1.03 (3H, t, J 7.3,
CH3CH2). δC (50 MHz, CDCl3) 156.1 (C=N), 155.0 (C=O),
134.0, 130.7, 129.5, 128.9, 128.6, 128.2, 127.8, 126.4(Ar), 104.1
(C5), 86.5 (C8), 37.8 (C4), 27.3 (CH3), 22.0 (CH2CH3), and 8.1
(CH2CH3).
[2] C. J. Easton, C. M. M. Hughes, E. R. T. Tiekink, G. P. Savage,
G. W. Simpson, Tetrahedron Lett. 1995, 36, 629. doi:10.1016/0040-
4039(94)02321-2
[3] C. J. Easton, C. M. M. Hughes, E. R. T. Tiekink, C. E. Lubin,
G. P. Savage, G. W. Simpson, Tetrahedron Lett. 1994, 35, 3589.
doi:10.1016/S0040-4039(00)73248-5
[4] G. P. Savage, G. T. Wernert, Aust. J. Chem. 2005, 58, 877.
doi:10.1071/CH05189
[5] S. J. Barrow, C. J. Easton, G. P. Savage, G. W. Simpson, Tetrahedron
Lett. 1997, 38, 2175. doi:10.1016/S0040-4039(97)00275-X
[6] C. J. Easton, G.A. Heath, C. M. M. Hughes, C. K.Y. Lee, G. P. Savage,
G. W. Simpson, E. R. T. Tiekink, G. J. Vuckovic, R. D. Wesbster,
J. Chem. Soc., Perkin Trans. 1 2001, 1168. doi:10.1039/B008081K
[7] C. J. Easton, C. M. M. Hughes, K. D. Kirby, G. P. Savage,
G. W. Simpson, E. R. T. Tiekink, Chem. Commun. 1994, 18, 2035.
[8] J. Anderson-McKay, G. P. Savage, G. W. Simpson, Aust. J. Chem.
1996, 49, 163.
[9] B. M. Kelly-Basetti, I. Krodkiewska, W. H. F. Sasse, G. P. Savage,
G. W. Simpson, Tetrahedron Lett. 1995, 36, 327. doi:10.1016/0040-
4039(94)02242-4
[10] C. K.Y. Lee, C. J. Easton, G. P. Savage, G. W. Simpson, Arkivoc 2006,
3, 175.
[11] B. M. Kelly-Basetti, M. F. Mackay, S. M. Pereira, G. P. Savage,
G. W. Simpson, Heterocycles 1994, 37, 529.
[12] S. M. Pereira, G. P. Savage, G. W. Simpson, R. J. Greenwood,
M. F. Mackay, Aust. J. Chem. 1993, 46, 1401.
[13] E. Toth, J. Torley, B. Hegedus, L. Szporny, B. Kiss, E. Palosi, D. Groo,
I. Laszlovszky, E. Lapis, F. Auth, L. Gaal, US Patent 5 157 038 1992.
[14] E.Toth, B. Kiss,A. Gere, E. Karpati, J.Torley, E. Palosi,A. Kis-Varga,
M. Paroczai, S. Szabó, D. Groó, I. Laszlovszky, E. Lapis, K. Csomor,
L. Szporny, Eur. J. Med. Chem. 1997, 32, 27. doi:10.1016/S0223-
5234(97)84359-0
[15] M. C. Aversa, G. Cum, P. D. Giannetto, G. Romeo, N. Uccella, J.
Chem. Soc., Perkin Trans. 1 1974, 209. doi:10.1039/P19740000209
[16] Y. Horino, M. Kimura, S. Tanaka, T. Okajima, Y. Tamaru, Chem. Eur.
J. 2003, 9, 2419. doi:10.1002/CHEM.200304586
[17] A. Werner, H. Buss, Chem. Ber. 1894, 27, 2193.
[18] K.-C. Liu, B. R. Shelton, R. K. Howe, J. Org. Chem. 1980, 45, 3916.
doi:10.1021/JO01307A039
[19] K. Sisido, K. Hukuoka, M. Tuda, H. Nozaki, J. Org. Chem. 1962, 27,
2663. doi:10.1021/JO01054A522
[20] S. L. Shapiro, V. Bandurco, L. Freedman, J. Org. Chem. 1961, 26,
3710. doi:10.1021/JO01068A021
[21] N. R. Easton, D. R. Cassady, R. D. Dillard, J. Org. Chem. 1962, 27,
2927. doi:10.1021/JO01055A510
[22] Y. Tamaru, M. Kimura, S. Tanaka, S. Kure, Z. Yoshida, Bull. Chem.
Soc. Jpn. 1994, 67, 2838. doi:10.1246/BCSJ.67.2838
[23] I. Fleming, K. Takaki, A. P. Thomas, J. Chem. Soc., Perkin Trans. 1
1987, 2269. doi:10.1039/P19870002269
[24] R. Ramesh, Y. Chandrasekaran, R. Megha, S. Chandrasekaran, Tetra-
hedron 2007, 63, 9153. doi:10.1016/J.TET.2007.06.066
[25] N. Shachat, J. J. Bagnell, Jr, J. Org. Chem. 1963, 28, 991.
doi:10.1021/JO01039A028
(5S*,9S*)- and (5S*,9R*)-9-Methyl-3,6,9-triphenyl-1,8-
dioxa-2,6-diazaspiro[4.4]non-2-ene-7-one 6g
Prepared on a 5.0-mmol scale to return the crude product,
which was purified by flash column chromatography, eluting
with 1% diethyl ether in dichloromethane to return isoxazoline
6g (1.01 g, 53%, dr 5:1) as a colourless solid. Recrystalliza-
tion from ethanol gave the major diastereomer (5S*,9S*)-6g, mp
161.5–162.7◦C. (Found: C 74.8, H 5.3, N 7.4, [M+] 322.1314.
C24H20N2O3 requires C 75.0, H 5.2, N 7.3%, [M+] 322.1317).
νmax/cm−1 (CHCl3 solution, NaCl disc) 1767, 1497, 1369, 1236.
δH (200 MHz, CDCl3) 7.55–7.20 (15H, m, Ar), 3.04 (1H, d, J
18.8, C4–Ha), 2.83 (1H, d, J 18.8, C4–Hb) and 2.05 (3H, s, CH3).
δC (50 MHz, CDCl3) 156.8 (C=N), 155.2 (C=O), 140.0, 133.8
(ArC), 130.7, 129.5, 129.2, 129.0, 128.8, 128.7 (ArCH), 128.0
(ArC), 127.8, 126.4, 125.2 (ArCH), 105.3 (C5), 87.2 (C8), 38.7
(C4), and 21.6 (CH3).
The minor diastereomer (5S*,9R*)-6g could not be isolated
from the major diastereomer and the NMR spectra were assigned
by subtraction. δH (200 MHz, CDCl3) 7.55–7.20 (15H, m, Ar),
3.75 (1H, d, J 18.8, C4–Ha), 3.44 (1H, d, J 18.8, C4–Hb) and 2.00
(3H, s, CH3). δC (50 MHz, CDCl3) 156.7 (C=N), 155.2 (C=O),
140.0, 133.8, 130.7, 129.6, 129.1, 129.0, 128.8, 128.6, 128.4,
127.7, 126.3, 124.9 (Ar), 105.1 (C5), 87.4 (C8), 37.7 (C4), and
25.9 (CH3).
[26] H. Martin, G. Pissiotas, O. Rohr, US Patent 3 800 037 1974.