analysis to get the formation constants and the species distribution
diagrams.
126.01, 127.0, 127.22, 127.37, 127.46, 127.82, 128.45, 129.56,
131.35, 131.65, 131.74, 132.11, 136.47, 143.86. HRMS (ESI) found
370.0878 (M+Na); calcd for C21H17NO2S+Na 370.0880.
General procedure for synthesis of dyads 1–5
Probe 5. (75%) as a light yellow solid, mp 175 ◦C (from
CH2Cl2), dH (300 MHz; CDCl3; Me4Si) 2.33 (3 H, s, CH3), 6.75 (1
H, br s, NH exchanges with D2O), 7.18–7.23 (3 H, m, ArH), 7.45
(2 H, quintet, ArH), 7.65 (1 H, s, ArH), 7.70 (2 H,d, J 8.4, ArH),
7.87–7.97 (3 H, m, ArH), 8.28 (1 H, s, ArH), 8.34 (1 H, s, ArH); dC
(75.5 MHz; CDCl3; Me4Si) 21.47, 117.21, 121.29, 125.33, 125.63,
125.81, 126.20, 127.27, 127.84, 128.14, 129.33, 129.69, 129.85,
131.32, 131.43, 132.11, 133.46, 135.98, 143.98. HRMS (ESI) found
370.0878 (M+Na); calcd for C21H17NO2S+Na 370.0880.
To the stirred solution of 1-anthracenamine (7) (293 mg, 1 mmol)
and Et3N (1 mmol) in dry CH2Cl2 (20 ml) at RT, the solution of
dansyl chloride (6) (324 mg, 1.2 mmol) in dry CH2Cl2 (10 ml)
was added during 5 min and stirring of the reaction mixture
was continued for 8 h. The reaction mixture was washed with
water, the solvent was removed under vacuum and the residue was
column chromatographed on silica gel and was recrystallized from
CH2Cl2 to get pure 5-dimethylamino-naphthalene-1-sulfonic acid
anthracen-1-yl-amide (1). Similarly reaction of 2-anthracenamine
(8)/aniline (9) with dansyl chloride (6) gave dyad 2/3. And the
reaction of (7) and (8) with p-toluenesulfonyl chloride (10) gave
(4) and (5), respectively.
Acknowledgements
We thank DST, New Delhi, for Rammana fellowship to SK and
FIST programme and IISc Bangalore for HRMS.
◦
Dyad 1. (65%) as a yellow solid, mp 220 C (from CH2Cl2),
dH (300 MHz; CDCl3; Me4Si) 2.76 (6 H, s, N(CH3)2), 7.09 (1
H, br s, NH exchanges with D2O), 7.23 (1 H, t, J 7.8, ArH),
7.28–7.44 (6 H, m, ArH), 7.67 (1 H, t, J 7.5, Dan-H), 7.79–7.87
(2 H, m, ArH), 7.99 (1 H, s, ArH), 8.02 (1 H, d, J 6.0, ArH),
8.28 (1 H, s, Dan-H), 8.33 (1 H, d, J 8.1, ArH), 8.63 (1 H, d, J
8.1, ArH); dC (75.5 MHz; CDCl3; Me4Si) 45.29, 115.23, 118.70,
120.38, 123.03, 123.28, 124.55, 125.61, 125.83, 126.71, 127.66,
127.75, 128.36, 128.61, 129.98, 130.20, 130.68, 131.48, 131.91,
134.39, 152.18; HRMS (ESI) found 449.1300 (M+Na), calcd for
C26H22N2O2S+Na 449.1302
References
1 (a) L. Fabrizzi and A. Poggi, Chem. Soc. Rev., 1995, 24, 197–202;
(b) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev.,
1997, 97, 1515–1566; (c) L. Prodi, F. Bolletta, M. Montalti and N.
Zaccheroni, Coord. Chem. Rev., 2000, 205, 59–83; (d) B. Valeur and I.
Leray, Coord. Chem. Rev., 2000, 205, 3–40; (e) A. P. de Silva, D. B. Fox,
A. J. M. Huxley and T. S. Moody, Coord. Chem. Rev., 2000, 205, 41–
57.
2 Fluorescent Chemosensors for Ion and Molecule Recognition, ed.
J. P. Desvergne and A. W. Czarnik, Kluwer Academic Publishers:
Dordrecht, The Netherlands, 1997.
Dyad 2. (65%) as a yellow solid, mp 178 ◦C (from CH2Cl2), dH
(300 MHz; CDCl3; Me4Si) 2.85 (6 H, s, N(CH3)2), 6.92 (1H, br s,
NH exchanges with D2O), 7.05 (1 H, dd, J1,2 9.0, J1,3 1.8, AnthH-
3), 7.19 (1 H, d, J 7.2, Dan-H6), 7.36–7.46 (3 H, m, AnthH-
6,7, Dan-H3), 7.52 (1 H, d, J1,3 1.8, AnthH-1), 7.61 (1 H, dd, J
8.4 and 7.5, Dan-H7), 7.78 (1 H, d, J 9.0, AnthH-4), 7.91(1 H,
d, J 9.1, AnthH-5/8), 7.93 (1 H, d, J 9.0, AnthH-5/8), 8.18 (1
H, s, AnthH-9/10), 8.23 (1 H, dd, J1,2 7.5 and J1,3 1.2, DanH-4),
8.27 (1 H, s, AnthH-9/10), 8.40 (1 H, d, J 9.0, DanH-8), 8.45 (1
H, d, J 8.4, DanH-2/4); dC (75.5 MHz; CDCl3; Me4Si) 45.34,
115.23, 117.26, 118.38, 121.20, 123.09, 125.25, 125.55, 125.72,
126.08, 127.79, 128.08, 128.72, 129.22, 129.65, 129.79, 130.41,
130.94, 131.21, 131.27, 131.99, 133.29, 134.03; HRMS (ESI) found
449.1300 (M+Na), calcd for C26H22N2O2S+Na 449.1302.
3 (a) D. Strausak, J. F. B. Mercer, H. H. Dieter, W. Stremmel and G.
Multhaup, Brain Res. Bull., 2001, 55, 175; (b) B. Sarkar, In Metal Ions
in Biological Systems, H. Siegel, A. Siegel, ed.; Marcel Dekker: New
York, 1981; Vol. 12, p 233.
4 E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008, 108,
1517–1549.
5 Turn-off fluorescent sensors for Cu2+: (a) W. Wang, A. Fu, J. You, G.
Gao, J. Lan and L. Chen, Tetrahedron, 2010, 66, 3695–3701; (b) S.
Seo, H. Y. Lee, M. Park, J. M. Lim, D. Kang, J. Yoon and J. H. Jung,
Eur. J. Inorg. Chem., 2010, 843–847; (c) J. Zheng, C. Xiao, Q. Fei, M.
Li, B. Wang, G. Feng, H. Yu, Y. Huan and Z. Song, Nanotechnology,
2010, 21, 045501; (d) H. H. Wang, L. Xue, Z. J. Fang, G. P. Li and H.
Jiang, New J. Chem., 2010, 34, 1239–1242; (e) X. H. Zhao, Q. J. Ma,
X. B. Zhang, B. Huang, Q. Jiang, J. Zhang, G. L. Shen and R. Q. Yu,
Anal. Sci., 2010, 26, 585–590; (f) P. Comba, R. Kramer, A. Mokhir, K.
Naing and E. Schatz, Eur. J. Inorg. Chem., 2006, 4442–4448; (g) Y. J.
Lee, D. Seo, J. Y. Kwon, G. Son, M. S. Park, Y. H. Choi, J. H. Soh,
H. N. Lee, K. D. Lee and J. Yoon, Tetrahedron, 2006, 62, 12340–12344;
(h) J. P. Sumner, N. M. Westerberg, A. K. Stoddard, T. K. Hurst, M.
Cramer, R. B. Thompson, C. A. Fierke and R. Kopelman, Biosens.
Bioelectron., 2006, 21, 1302–1308.
Probe 3. (85%) as a yellow solid, mp 135 ◦C (from CH2Cl2), dH
(300 MHz; CDCl3; Me4Si) 2.87 (6 H, s, N(CH3)2), 6.67 (1 H, br s,
NH exchanges with D2O), 6.89 (2 H, m, ArH), 7.02–7.19 (4 H, m,
ArH), 7.42 (1 H, t, J 7.5, ArH), 7.58 (1 H, t, J 8.1, ArH), 8.15 (1
H, d, J 7.2, ArH), 8.32 (1 H, d, J 8.7, ArH), 8.49 (1 H, d, J 8.4,
ArH); dC (75.5 MHz; CDCl3; Me4Si) 45.38, 115.20, 118.42, 121.62,
123.07, 125.27, 128.60, 129.12, 129.61, 129.79, 130.33, 130.81,
134.08, 136.39, 152.09. HRMS (ESI) found 349.0987 (M+Na);
calcd for C18H18N2O2S+Na 349.0989.
6 Turn-on fluorescent sensors for Cu2+: (a) R. Martinez, A. Espinosa, A.
Tarraga and P. Molina, Tetrahedron, 2010, 66, 3662–3667; (b) M. H.
Kim, H. H. Jang, S. Yi, S. Chang and M. S. Han, Chem. Commun.,
2009, 4838–4840; (c) Z. Xu, J. Yoon and D. R. Spring, Chem. Commun.,
2010, 46, 2563–2565; (d) X. Chen, M. Jou, H. Lee, S. Kou, J. Lim, S. W.
Nam, S. Park, K. M. Kim and J Yoon, Sens. Actuators, B, 2009, 137,
597–602; (e) K. W. K. Swamy, S. K. Ko, S. Kwon, H. Lee, C. Mao,
J. M. Kim, K. H. Lee, J. Kim, I. Shin and J. Yoon, Chem. Commun.,
2008, 5915–5917; (f) J. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129,
9838–9839; (g) Y. Xiang, A. Tong, P. Jin and Y. Ju, Org. Lett., 2006,
8, 2863–2866; (h) Z. C. Wen, R. Yang, H. He and Y. B. Jiang, Chem.
Commun., 2006, 106–108.
◦
Probe 4. (70%) as a yellow solid, mp 200 C (from CH2Cl2),
dH (300 MHz; CDCl3; Me4Si) 2.28 (3 H, s, CH3), 6.88 (1 H, br s,
NH exchanges with D2O), 7.14 (2 H, d, J 8.1, ArH), 7.31–7.38 (2
H, m, ArH), 7.46–7.49 (2 H, m, ArH), 7.68 (2 H, d, J 8.1, ArH),
7.86–7.98 (3 H, m, ArH), 8.29 (1 H, s, ArH), 8.39 (1 H, s, ArH); dC
(75.5 MHz; CDCl3; Me4Si) 21.41, 120.34, 121.70, 124.60, 125.91,
7 Ratiometric fluorescent sensors for Cu2+: (a) M. Liu, H. Zhao, X. Quan,
S. Chen and H. Yu, Chem. Commun., 2010, 46, 1144–1146; (b) M.
Royzen, Z. Dai and J. W. Canary, J. Am. Chem. Soc., 2005, 127, 1612–
1613; (c) D. W. Domaille, L. Zeng and C. J. Chang, J. Am. Chem. Soc.,
2010, 132, 1194–1195; (d) S. Goswami, D. Sen and N. K. Das, Org.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 2451–2458 | 2457
©