Journal of the American Chemical Society
Page 4 of 5
Wentrup, C. J. Am. Chem. Soc. 2011, 133, 5413 (l) Messmer, A.;
resonating structure (D) of (C) led to the product formation
with the regeneration of the active catalytic species (AC-1).
In conclusion, we have developed an efficient intramolecular
denitrogenative transannulation/C(sp2)–H amination method
for the synthesis of a wide number of carbolines and 7-
azaindoles by Ir(III)-catalyzed electrocyclization process. The
essential requirement of this approach is the employment of
[Cp*IrCl2]2 and AgSbF6 to generate the active catalytic species
that help to form the metal-nitrene intermediate for the
transannulation/amination. This is the first report for the deni-
trogenative transannulation/amination via metal-nitrene for-
mation, which undergoes via an unprecedented electrocycliza-
tion process. The developed method shows very broad sub-
strate scope and functional group tolerance. The synthetic
benefits of the developed approach are showcased with a short
synthesis of important bioactive molecules. More efforts are
underway in our laboratory.
Hajos, G.; Juhasz-Riedl, Z.; Sohar, P. J. Org. Chem. 1988, 53, 973.
(m) For click reaction, see: Chattopadhyay, B.; Rivera Vera, C. I.;
Chuprakov, S.; Gevorgyan, V. Org. Lett. 2010, 12, 2166.
(6) For representative examples, see: (a) Boyer, J. H.; Miller, E. J.
J. Am. Chem. Soc. 1959, 81, 4671. (b) Lowe-Ma, Ch. K.; Nissan, R.
A.; Wilson, W. S. J. Org. Chem. 1990, 55, 3755. (c) Evans, R. A.;
Wentrup, C. J. Chem. Soc., Chem. Commun. 1992, 1062. (d) Sasaki,
T.; Kanematsu, K.; Murata, M. J. Org. Chem. 1971, 36, 446. (e)
Pochinok, V. V.; Avramenko, L. F.; Grigorenko, P. S.; Skopenko, V.
N. Russ. Chem. Rev. 1975, 44, 481.
1
2
3
4
5
6
7
8
(7) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. Org. Lett.
2009, 11, 3598.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) For a leading review of C–H aminations by metal-nitrene for-
mation, see: Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(9) For selected examples, see: (a) Helbecque, N.; Moquin, C.;
Bernier, J. L.; Morel, E.; Guyot, M.; Henichart, J. P. Cancer Biochem.
Biophys. 1987, 9, 271. (b) Yeung, B. K. S.; Nakao, Y.; Kinnel, R. B.;
Carney, J. R.; Yoshida, W. Y.; Scheuer, P. J. J. Org. Chem. 1996, 61,
7168. (c) Aza, H.; King, R. S.; Squires, R. B.; Guengerich, F. P.;
Miller, D. W.; Freeman, J. P.; Lang, N. P.; Kadlubar, F. F. Drug
Metab. Dispos. 1996, 24, 395.
(10) For selected examples, see: (a) He, L.; Allwein, S. P.; Dugan,
B.; Knouse, K. W.; Ott, G. R.; Zificsak, C. A. Org. Synth. 2016, 93,
271. (b) Wadsworth, A. D.; Naysmith, B. J.; Brimble, M. A. Eur. J.
Med. Chem. 2015, 97, 816.
(11) This is the first report for the intramolecular denitrogenative
transannulation/C(sp2)–H amination of fused 1,2,3,4-tetrazoles via
metal-nitrene. Attempted transannulation of 1,2,3,4-tetrazoles with
alkynes and nitriles failed under the developed reaction conditions.
(12) Extensive screenings were carried out by the different combi-
nations of solvents, catalysts and additives, for details, see: SI.
(13) Based on the NMR studies at room temperature, we observed
that 1,2,3,4-tetrazole always exits in closed form, there is no effect of
substituent at C8 position. However, halogen substituent at C5 posi-
tion gives appreciable amount of open form. For details, see ref. 6.
(14) For lower reactivity of 2-pyridyl diazo-compounds in Rh-
catalyzed reactions, see: Davies, H. M. L.; Townsend, R. J. J. Org.
Chem. 2001, 66, 6595.
(15) For selected examples, see: (a) Ryu, J.; Kwak, J.; Shin, K.;
Lee, D.; Chang, S. J. Am. Chem. Soc. 2013, 135, 12861. (b) Park, Y.;
Heo, J.; Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2016, 138, 14020.
(c) Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M.-H.;
Chang, S. Science 2018, 359, 1016. (d) Shin, K.; Park, Y.; Baik, M.
H.; Chang, S. Nat. Chem. 2018, 10, 218. (e) Park, Y.; Kim, Y.;
Chang, S. Chem. Rev. 2017, 117, 9247.
ASSOCIATED CONTENT
Supporting Information Available: Full characterization, copies
of all spectral data, experimental procedures. This material is
AUTHOR INFORMATION
Corresponding Author
buddhadeb.c@cbmr.res.in, buddhachem12@gmail.com
Author Contributions
SKD and SR contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by CSIR-EMR-II grant (Sanction No.
02(0259)/16/EMR-II), Ramanujan grant and DST-Young Scien-
tist Grant. SKD thanks CSIR for JRF, SR and HK thanks CSIR
for SRF and JRF. We thank the NMR and mass spectrometry
facility at CBMR, and the Director, for the research facilities.
REFERENCES
(1) For leading reviews on transannulations of 1,2,3-triazoles, see:
(a) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem. Int. Ed. 2012,
51, 862. (b) Gulevich, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed.
2013, 52, 1371. (c) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev.
2014, 43, 5151.
(16) Notably, for C5-substituted pyridine, reaction completed
within short period of time, which might be due to more open azide
form of the tetrazole.
(17) Selected examples of electrocyclization of other types of azi-
des: (a) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem. Int. Ed.
2008, 47, 5056. (b) Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K.
J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225. (c)
Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74,
6442. (d) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831. (e)
Pumphrey, A. L.; Dong, H.; Driver, T. G. Angew. Chem. Int. Ed.
2012, 51, 5920. (f) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am.
Chem. Soc. 2013, 135, 620. (g) Harrison, J. G.; Gutierrez, O.; Jana,
N.; Driver, T. G.; Tantillo, D. J. Am. Chem. Soc. 2016, 138, 487. (h)
Mazumdar, W.; Jana, N.; Thurman, B. T.; Wink, D. J.; Driver, T. G.
J. Am. Chem. Soc. 2017, 139, 5031. (i) Alford, J. S.; Spangler, J. E.;
Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 11712.
(18) To verify the isomerization during the reaction, Z-isomer (10)
was heated at 130 oC for several hours and found no interconversion.
(19) For detailed mechanistic studies via electrocyclization path-
way of nonpyridyl azide substrates, see: ref. 17c.
(20) Wang, L.; Yang, Z.; Yang, M.; Zhang, R.; Kuaia, C.; Cui, X.
Org. Biomol. Chem. 2017, 15, 8302.
(2) For the first report of denitrogenative transannulation via ionic
mechanism, see: (a) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V.
Angew. Chem. Int. Ed. 2007, 46, 4757. (b) Horneff, T.; Chuprakov,
S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc.
2008, 130, 14972.
(3) For the first report of denitrogenative transannulation by radical
activation mechanism, see: Roy, S.; Das, S. K.; Chattopadhyay, B.
Angew. Chem. Int. Ed. 2018, 57, 2238.
(4) During preparation of our manuscript, one report appeared for
the denitrogenative transannulation with monocyclic 1,2,3,4-
tetrazoles via metal-carbene intermediate, Nakamuro, T.; Hagiwara,
K.; Miura, T.; Murakami, M. Angew. Chem. Int. Ed. 2018, 57, 5497.
(5) For selected pioneering examples, see: (a) Harder, R.; Wentrup,
C. J. Am. Chem. Soc. 1976, 98, 1259. (b) Wentrup, C.; Winter, H.-W.
J. Am. Chem. Soc. 1980, 102, 6159. (c) Evans, R. A.; Wong, M. W.;
Wentrup, C. J. Am. Chem. Soc. 1996, 118, 4009. (d) Wentrup, C.;
Kuzaj, M.; Lüerssen, H. Angew. Chem. Int. Ed. Engl. 1986, 25, 480.
(e) Evans, R. A.; Wentrup, C. J. Chem. Soc. Chem. Commun. 1992,
1062. (f) Addicott, C.; Reisinger, A.; Wentrup, C. J. Org. Chem.
2003, 68, 1470. (g) Reisinger, A.; Koch, R.; Bernhardt, P. V.;
Wentrup, C. Org. Biomol. Chem. 2004, 2, 1227. (h) Reisinger, A.;
Koch, R.; Wentrup, C. J. Chem. Soc., Perkin Trans. I 1998, 2247. (i)
Reisinger, A.; Wentrup, C. Chem. Commun. 1996, 813. (j) Wentrup,
C. Tetrahedron 1970, 27, 367. (k) Kvaskoff, D.; Vosswinkel, M.;
(21) (a) Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G.
Organometallics 2014, 33, 4076. (b) Liu, J.-B.; Sheng, X.-H.; Sun,
C.-Z.; Huang, F.; Chen, D.-Z. ACS Catal. 2016, 6, 2452.
4
ACS Paragon Plus Environment