C O M M U N I C A T I O N S
lographic data and a CIF file for 2a, and computational details for 3′.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Katz, T. J. Angew. Chem., Int. Ed. 2000, 39, 1921–1923. (b) Urbano,
A. Angew. Chem., Int. Ed. 2003, 42, 3986–3989. (c) Martin, R. H. Angew.
Chem., Int. Ed. 1974, 13, 649–660.
(2) (a) Reetz, M. T.; Beuttenmu¨ller, E. W.; Goddard, R. Tetrahedron Lett.
1997, 38, 3211–3214. (b) Takenaka, N.; Sarangthem, R. S.; Captain, B.
Angew. Chem., Int. Ed. 2008, 47, 9708–9710. (c) Botek, E.; Andre´, J.-M.;
Champagne, B.; Verbiest, T.; Persoons, A. J. Chem. Phys. 2005, 122,
234713. (d) Herman, W. N.; Kim, Y.; Cao, W. L.; Goldhar, J.; Lee, C. H.;
Green, M. M.; Jain, V.; Lee, M. J. J. Macromol. Sci., Pure Appl. Chem.
2003, A40, 1369–1382.
(3) (a) Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. J. Am. Chem. Soc. 2005,
127, 13806–13807. (b) Misek, J.; Teply, F.; Stara, I. G.; Tichy, M.; Saman,
D.; Cisarova, I.; Vojtisek, P.; Stary, I. Angew. Chem., Int. Ed. 2008, 47,
3188–3191. (c) Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew. Chem.,
Int. Ed. 2006, 45, 2242–2245. (d) Schmidt, K.; Brovelli, S.; Coropceanu,
V.; Bre´das, J.-L.; Bazzini, C.; Caronna, T.; Tubino, R.; Meinardi, F. J.
Phys. Chem. A 2006, 110, 11018–11024. (e) Murguly, E.; McDonald, R.;
Branda, N. R. Org. Lett. 2000, 2, 3169–3172. (f) Ichikawa, J.; Yokota,
M.; Kudo, T.; Umezaki, S. Angew. Chem., Int. Ed. 2008, 47, 4870–4873.
(g) Rasmusson, T.; Martyn, L. J. P.; Chen, G.; Lough, A.; Oh, M.; Yudin,
A. K. Angew. Chem., Int. Ed. 2008, 47, 7009–7012.
Figure 3. Comparison of the experimental (dashed line) and TD-DFT (solid
line) CD spectrum of 3′ at the BHLYP/SV(P) level. The numbered
excitations correspond to those with high rotatory strength that were analyzed
in detail (see the SI).
(4) (a) Pammer, F.; Sun, Y.; Pagels, M.; Weismann, D.; Sitzmann, H.; Thiel,
W. R. Angew. Chem., Int. Ed. 2008, 47, 3271–3274. (b) Katz, T. J.;
Sudhakar, A.; Teasley, M. F.; Gilbert, A. M.; Geiger, W. E.; Robben, M. P.;
Wuensch, M.; Ward, M. D. J. Am. Chem. Soc. 1993, 115, 3182–3198. (c)
Gilbert, A. M.; Katz, T. J.; Geiger, W. E.; Robben, M. P.; Rheingold, A. L.
J. Am. Chem. Soc. 1993, 115, 3199–3211. (d) El-Abed, R.; Aloui, F.; Genet,
J.-P.; Ben-Hassine, B.; Marinetti, A. J. Organomet. Chem. 2007, 692, 1156–
1160.
(5) (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and PerspectiVes;
VCH: Weinheim, Germany, 1995. (b) Sauvage, J.-P. Transition Metals in
Supramolecular Chemistry; Wiley: Chichester, U.K., 1994. (c) Maury, O.;
Le Bozec, H. Acc. Chem. Res. 2005, 38, 691–704.
(6) (a) Harvey, J. N.; Heslop, K. M.; Orpen, A. G.; Pringle, P. G. Chem.
Commun. 2003, 278–279. (b) Shen, W.; Graule, S.; Crassous, J.; Lescop,
C.; Gornitzka, H.; Re´au, R. Chem. Commun. 2008, 850–852. (c) Fave, C.;
Hissler, M.; Se´ne´chal, K.; Ledoux, I.; Zyss, J.; Re´au, R. Chem. Commun.
2002, 1674–1675.
(7) (a) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1994,
116, 1880–1889. (b) Fagan, P. J.; Nugent, W. A. J. Am. Chem. Soc. 1988,
110, 2310–2312.
Figure 4. Two MOs of 3′ involved (14%) in excitation 9 in Figure 3.
(8) (a) Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.;
Vogtle, F.; Grimme, S. J. Am. Chem. Soc. 2000, 122, 1717–1724. (b)
Grimme, S.; Harren, J.; Sobanski, A.; Vogtle, F. Eur. J. Org. Chem. 1998,
8, 1491–1509. (c) Autschbach, J.; Ziegler, T.; van Gisbergen, S. J. A.;
Baerends, E. J. J. Chem. Phys. 2002, 116, 6930–6940.
tail of the first CD band is likely a major contributor to the huge
molar rotation of 3. Further details and additional computations
will be reported in a follow-up article.
(9) (a) Quin, L. D.; Quin, G. S. In Phosphorus-Carbon Heterocyclic
Chemistry: The Rise of a New Domain; Mathey, F., Ed.; Elsevier: Oxford,
U.K., 2001. (b) Baumgartner, T.; Re´au, R. Chem. ReV. 2006, 106, 4681–
4727. (c) Crassous, J.; Re´au, R. Dalton Trans. 2008, 6865–6876. (d) Re´au,
R.; Dyer, P. In ComprehensiVe Heterocyclic Chemistry III; Katritzky, A. R.,
Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford,
U.K. 2008; Vol. 3, pp 1029-1148. (e) Hay, C.; Hissler, M.; Fischmeister,
C.; Rault-Berthelot, J.; Toupet, L.; Nyulaszi, L.; Re´au, R. Chem.-Eur. J.
2001, 7, 4222–4236. (f) Su, H.-C.; Fadhel, O.; Yang, C.-J.; Cho, T.-Y.;
Fave, C.; Hissler, M.; Wu, C.-C.; Re´au, R. J. Am. Chem. Soc. 2006, 128,
983–995. (g) Nohra, B.; Graule, S.; Lescop, C.; Re´au, R. J. Am. Chem.
Soc. 2006, 128, 3520–3521. (h) Leca, F.; Lescop, C.; Rodriguez, E.;
Costuas, K.; Halet, J.-F.; Re´au, R. Angew. Chem., Int. Ed. 2005, 44, 4362–
4365.
In conclusion, because of their peculiar properties (ease of
inversion at P, polarizable π systems, etc.),9 phospholes are unique
building blocks for the tailoring of azahelicene derivatives that can
be assembled on metal centers. The nature of the metal center has
a profound impact on the chiroptical properties of the assemblies,
opening a novel and potent means of tuning this key property of
chiral screw-shaped π-conjugated structures. The theoretical analysis
confirmed the process of stereoselective coordination of phosphole-
modified azahelicenes to PdII and revealed the intimate metal-helix
electronic interactions that impact the chiroptical properties of the
metal-bis(helicene) assembly.
(10) It should be noted that the crystallization was performed with a mixture of
(P*,SP*)-2a and (P*,RP*)-2b and afforded single crystals of racemic
(P*,SP*)-2a.
(11) The computations used DFT/TD-DFT with the BP and BHLYP functionals
and were performed with the Turbomole program (see the SI for details
and references).
Acknowledgment. We thank the Ministe`re de l’Education
Nationale de la Recherche et de la Technologie, the Centre National
de la Recherche Scientifique (CNRS), the Conseil Re´gional de
Bretagne, the Agence Nationale de la Recherche (ANR) (Project
PHOSHELIX-137104), and the National Science Foundation (CHE
0447321).
(12) The BP/SV(P)-optimized structures of 3 show that the coordination sphere
is distorted, as observed for related model complexes.6b
(13) It is noteworthy that the overlapping of two P-helices induces a distorted
square-planar geometry with a ∆ configuration around the Pd center (Figure
2) while M-helices induce a Λ configuration.
(14) (a) Sauthier, M.; Le Guennic, B.; Deborde, V.; Toupet, L.; Halet, J.-F.;
Re´au, R. Angew. Chem., Int. Ed. 2001, 40, 228–231. (b) Sauthier, M.; Leca,
F.; Toupet, L.; Re´au, R. Organometallics 2002, 21, 1591–1602.
Supporting Information Available: Experimental procedures and
spectroscopic data (UV-vis and CD spectra) for 1-4, X-ray crystal-
JA809396F
9
J. AM. CHEM. SOC. VOL. 131, NO. 9, 2009 3185