Published on Web 11/03/2009
Pd-Catalyzed N-Arylation of Secondary Acyclic Amides:
Catalyst Development, Scope, and Computational Study
Jacqueline D. Hicks, Alan M. Hyde,* Alberto Martinez Cuezva,† and
Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts AVenue,
Cambridge, Massachusetts 02139
Received June 1, 2009; E-mail: sbuchwal@mit.edu; ahyde@fas.harvard.edu
Abstract: We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with
aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component
in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was
found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through
synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance
of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly
electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the
electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X)
intermediate.
mides) with aryl bromides3 and aryl or vinyl sulfonates4 has
largely been accomplished by the use of xantphos or XPhos as
Introduction
Methods for the cross-coupling of amides with aryl halides
and pseudohalides have matured to a point that they may be
used to reliably prepare a wide variety of substances.1 Advances
in this area are due, in large part, to the identification of
improved supporting ligands. The classic copper-mediated
coupling of an amide with an aryl iodide (the Goldberg reaction)
proceeds catalytically and at lower temperatures when diamine
ligands are employed.2 Efficient Pd-catalyzed coupling of
amides and related nucleophiles (ureas, carbamates, sulfona-
the supporting ligand. Most recently, the use of monodentate
biarylphosphines bearing a methyl or methoxy group ortho to
the phosphorus (L3) has enabled the coupling of amides with
heteroaryl and aryl chlorides.5,6 A prominent limitation of all
amidation methods is they are mostly restricted to primary
amides or lactams; a general method for the intermolecular
cross-coupling of acyclic secondary amides with aryl halides
and/or pseudohalides has not yet been reported.7-9 The large
size of acyclic secondary amides,3a combined with their
relatively low nucleophilicity (compared to amines), has made
secondary amides a particularly challenging substrate class for
cross-coupling.
† Present address: Universidad de Burgos, Burgos, Spain.
(1) For reviews, see: Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed.
2003, 42, 5400. (b) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003,
2428. (c) Ma, D.; Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (d) Jiang,
L.; Buchwald, S. L. In Metal-Catalyzed Cross-Coupling Reactions,
2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim,
Germany, 2004. (e) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2008, 47, 6338.
(4) For the use of xantphos, see: refs 3a,b and. (a) Wallace, D. J.; Klauber,
D. J.; Chen, C.; Volante, R. P. Org. Lett. 2003, 5, 4749. (b) Imbriglio,
J. E.; DiRocco, D.; Raghavan, S.; Ball, R. G.; Tsou, N.; Mosley, R. T.;
Tata, T. R.; Collitti, S. L. Tetrahedron Lett. 2008, 49, 4897. For the
use of XPhos, see: (c) Huang, X.; Anderson, K. W.; Zim, D.; Jiang,
L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
(d) Bhagwanth, S.; Waterson, A. G.; Adjabeng, G. M.; Hornberger,
K. R. J. Org. Chem. 2009, 74, 4634. For the use of other ligands, see:
(e) Klapars, A.; Campos, K. R.; Chen, C.; Volant, R. P. Org. Lett.
2005, 7, 1185. (f) Willis, M. C.; Brace, G. N.; Holmes, I. P. Synthesis
2005, 3229.
(2) For Cu-catalyzed reactions, see: (a) Shen, R.; Porco, J. A. Org. Lett.
2000, 2, 1333. (b) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald,
S. L. J. Am. Chem. Soc. 2001, 123, 7727. (c) Klapars, A.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421. (d) Jiang, L.;
Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667. (e)
Klapars, A.; Parris, S.; Anderson, K. W.; Buchwald, S. L. J. Am. Chem.
Soc. 2004, 126, 3529. (f) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6,
1809. (g) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4120. (h) Strieter, E. R.; Bhayana, B.;
Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 78.
(5) (a) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2007, 129, 13001. (b) Fors, B. P.; Krattiger, P.; Strieter,
E.; Buchwald, S. L. Org. Lett. 2008, 10, 3505. (c) Fors, B. P.;
Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L. Tetrahedron 2009, 65,
6576.
(3) For the use of xantphos, see: (a) Yin, J.; Buchwald, S. L. Org. Lett.
2000, 2, 1101. (b) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 6043. (c) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129,
7734. (d) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen,
R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609. (e) Manley, P. J.;
Bilodeau, M. T. Org. Lett. 2004, 6, 2433. (f) Audisio, D.; Messaoudi,
S.; Peyrat, J.-F.; Brion, J.-D.; Alami, M. Tetrahedron Lett. 2007, 48,
6928. (g) Messaoudi, S.; Audisio, D.; Brion, J.-D.; Alami, M.
Tetrahedron 2007, 63, 10202. (h) Artamkina, G. A.; Sergeev, A. G.;
Beletskaya, I. P. Tetrahedron Lett. 2001, 42, 4381. (i) For the use of
P(t-Bu)3, see: Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy,
K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575.
(6) For additional examples of amidations with aryl chlorides, see: (a)
Ghosh, A.; Sieser, J. E.; Riou, M.; Cai, W.; Rivera-Ruiz, L. Org. Lett.
2003, 5, 2207. (b) Shen, Q.; Shekhar, S.; Stambuli, J. P.; Hartwig,
J. F. Angew. Chem., Int. Ed. 2005, 44, 1371. (c) Ligthart, G. B. W. L.;
Ohkawa, H.; Sijbesma, R. P.; Meijer, E. W. J. Org. Chem. 2006, 71,
375. (d) Piguel, S.; Legraverend, M. J. Org. Chem. 2007, 72, 7026.
(e) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett. 2006, 8,
3311. For an example of amidation with gem-dichloroolefins, see: (f)
Ye, W.; Mo, J.; Zhao, T.; Xu, B. Chem. Commun. 2009, 3246.
9
16720 J. AM. CHEM. SOC. 2009, 131, 16720–16734
10.1021/ja9044357 CCC: $40.75 2009 American Chemical Society