J. I. Trujillo et al. / Bioorg. Med. Chem. Lett. 19 (2009) 908–911
911
Figure 4. Selectivity profiling12 of compounds 1 and 9 against 37 different kinases (upstate panel). Values are % inhibition at 10
lM using ATP = Km.
WO 2004/104217A2.; (e) Redig, A. J.; Platanias, L. C. J. Interferon Cytokine Res.
2007, 27, 622.
zole, poised to read out the changes discussed above (Fig. 3). In
spite of this progress on selectivity against both closely and dis-
tantly related kinases, when 9 was profiled against a broader set
of other kinases (Upstate panel), significant crossover was ob-
served (Fig. 4).
4. (a) Witherington, J.; Bordas, V.; Garland, S. L.; Hickey, D. M. B.; Ife, R. J.; Liddle,
J.; Saunders, M.; Smith, D. G.; Ward, R. Bioorg. Med. Chem. Lett. 2003, 13, 1577;
(b) Witherington, J.; Bordas, V.; Haigh, D.; Hickey, D. M. B.; Ife, R. H.; Rawlings,
A. D.; Sligsby, B. P.; Smith, D. G.; Ward, R. W. Bioorg. Med. Chem. Lett. 2003, 13,
1581; (c) Witherington, J.; Bordas, V.; Gaiba, A.; Garton, N. S.; Naylor, A.;
Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Takle, A. K.; Ward, R. W. Bioorg.
Med. Chem. Lett. 2003, 13, 3055; (d) Witherington, J.; Bordas, V.; Gaiba, A.;
Naylor, A.; Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Takle, A. K.; Ward, R.
Bioorg. Med. Chem. Lett. 2003, 13, 3059.
5. (a) Jeffrey, P. D.; Russo, A. A.; Polyak, K.; Gibbs, E.; Hurwitz, J.; Massague, J.;
Pavletich, N. P. Nature 1995, 376, 313; (b) Lawrie, A. M.; Noble, M. E.; Tunnah,
P.; Brown, N. R.; Johnson, L. N.; Endicott, J. A. Nat. Struct. Biol. 1997, 4, 796.
6. (a) Xu, Z. B.; Chaudhary, D.; Olland, S.; Wolfrom, S.; Czerwinski, R.; Malakian,
K.; Lin, L.; Stahl, M. L.; Joseph-McCarthy, D.; Benander, C.; Fitz, L.; Greco, R.;
Somers, W. S.; Mosyak, L. J. Biol. Chem. 2004, 279, 50401; (b) Messerschmidt, A.;
Macieira, S.; Velarde, M.; Baedeker, M.; Benda, C.; Jestel, A.; Brandstetter, H.;
Neuefeind, T.; Blaesse, M. J. Mol. Biol. 2005, 352, 918; (c) Grodsky, N.; Li, Y.;
Bouzida, D.; Love, R.; Jensen, J.; Nodes, B.; Nonomiya, J.; Grant, S. Biochemistry
2006, 45, 13970.
7. The crystal structures of compounds 9 and 17 bound at the active sites of CDK-
2 or CDK-2 in complex with CyclinA have been deposited in the Protein
Databank (Accession codes: 3EZV, 3EZR, 3FX5). Data for those experiments
were in part collected at IMCA-CAT (17-ID) beamline at the Advanced Photon
Source and was supported by the companies of the Industrial Macromolecular
Crystallography Association through a contract with the Center for Advanced
Radiation Sources at the University of Chicago.
8. Molecular graphics images prepared with PyMol v0.98 (DeLano, W. L.;
9. (a) Kania, R. S.; Bender, S. L.; Borchardt, A. J.; Braganza, J. F.; Cripps, S. J.; Hua, Y.;
Johnson, D. M.; Johnson, T. O.; Luu, H. T.; Palmer, C. L.; Reich, S. H.; Tempczyk-
Russell, A. M. WO 2001/02369A2.; (b) Buchi, G.; Lee, G. C. M.; Yang, D.;
Tannenbaum, S. R. J. Am. Chem. Soc. 1986, 108, 4115.
While the molecular determinants of kinase selectivity can
occasionally be linked to a single amino acid difference, in most
cases multiple amino acid changes and subtle shifts of conforma-
tion of the protein govern the answer. Comparing the PKC-f dock-
ing model for 1 and the CDK-2:CyclinA complex with 9 reveals a
tilt in the position of the compounds in the binding site (see Sup-
plementary Materials). This shift allows the phenyl ring of 1 to ro-
tate ꢀ70° and its 4-OH group to come within 3.9 Å of the side chain
of Asp394. Conversion of the hydroxyl moiety of 1 to an amine as
in 9 and 17 would provide a second hydrogen bond donor that
could, with slight shifts to the protein or ligand position, allow it
to form an interaction with that Asp residue. Interestingly, CDK-2
and the PKC isoforms with decreased affinity for 9 and 17 com-
pared to 1 all differ from PKC-f and PKC-i at Phe304, Ile330,
Thr393, and Tyr395: amino acid positions flanking the phenyl ring
of the inhibitors (Fig. 1). However, comparison of amino acid iden-
tity across those positions in the broader panel of kinases assayed
does not reveal a clear trend to predict selectivity in this series.
In conclusion, by varying the nature of the 6-substituent of the
indazole-benzimidazole11 1, a potent and highly PKC isoform
selective compound 9 was identified.13 The compound unfortu-
nately does not possess the desired selectivity across a broader
10. (a) Ozden, S.; Atabey, D.; Yildiz, S.; Goker, H. Bioorg. Med. Chem. 2005, 13, 1587;
(b) Thompson, L. K.; Ramaswamy, B. S.; Seymour, E. A. Can. J. Chem. 1977, 55,
878.
range of other kinases (<50% inhibition at 10 lM). Structure based
design of selectivity against these other kinases is currently
underway.
11. (a) For other reports of kinase inhibitors belonging to the indazole-
benzimidazole structural class, see: Georges, G.; Goller, B.; Limberg, A.;
Rueger, P.; Rueth, M.; Schuell, C.; Stahl, M. WO 2007/107346A1.; (b) Teng,
M.; Zhu, J.; Johnson, M. D.; Chen, P.; Kornmann, J.; Chen, E.; Blasina, A.;
Register, J.; Anderes, K.; Rogers, C.; Deng, Y.; Ninkovic, S.; Grant, S.; Hu, Q.;
Lundgren, K.; Peng, Zhengwei; Kania, R. S. J. Med. Chem. 2007, 50, 5253; (c)
Georges, G.; Goller, B.; Kuenkele, K.; Limberg, A.; Reiff, U.; Rueger, P.; Rueth, M.;
Schuell, C. WO 2006/063841A2.; (d) McBride, C. M.; Renhowe, P. A.; Gesner, T.
G.; Jansen, J. M.; Lin, J.; Ma, S.; Zhou, Y.; Shafer, C. M. Bioorg. Med. Chem. Lett.
2006, 16, 3789; (e) McBride, C. M.; Renhowe, P. A.; Heise, C.; Jansen, J. M.;
Lapointe, G.; Ma, S.; Pineda, R.; Vora, J.; Wiesmann, M.; Shafer, C. M. Bioorg.
Med. Chem. Lett. 2006, 16, 3595; (f) Foloppe, N.; Fisher, L. M.; Francis, G.;
Howes, R.; Kierstan, P.; Potter, A. Bioorg. Med. Chem. 2006, 14, 1792.
12. Heat map prepared using Spotfire DecisionSite 8.1.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Mellor, H.; Parker, P. J. J. Biochem. 1998, 332, 281.
2. Moscat, J.; Rennert, P.; Diaz-Meco, M. T. Cell Death Differ. 2006, 13, 702. and
references cited therein.
3. (a) Yamaguchi, T.; Suzuki, M.; Kimura, H.; Kato, M. Allergol. Int. 2006, 55, 245;
(b) LaVallie, E. R.; Chockalingam, P. S.; Collins-Racie, L. A.; Freeman, B. A.;
Keohan, C. C.; Letiges, M.; Dorner, A. J.; Morris, E. A.; Majumdar, M. K.; Arai, M. J.
Biol. Chem. 2006, 281, 24124; (c) Chockalingam, P. S.; Varadarajan, U.; Sheldon,
R.; Fortier, E.; LaVallie, E. R.; Morris, E. A.; Yaworsky, P. J.; Majumdar, M. K.
Arthritis Rheum. 2007, 56, 4074; (d) LaVallie, E. R.; Collins-Racie, L. A.; Arai, M.
13. For a report of a selective peptide inhibitor of PKC-f, see: Lawrence, D. S. WO
2005/079300A2. For a recent report of a family of natural products that inhibit
PKC-f, see: Whitson, E. L.; Bugni, T. S.; Chockalingam, P. S.; Concepcion, G. P.;
Harper, M. K.; He, M.; Hooper, J. N. A.; Mangalindan, G. C.; Ritacco, F.; Ireland, C.
M. J. Nat. Prod. 2008, 71, 1213. For a recent report regarding a study of the 3-D
structures of the PKCs (
a, bI, and f), see: Tang, S.; Xiao, V.; Wei, L.; Whiteside, C.
I.; Kotra, L. P. Proteins Struct. Funct. Bioinform. 2008, 72, 447.