Journal of Medicinal Chemistry
Article
(c) Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino,
L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG redirects
amyloidogenic polypeptides into unstructured, off-pathway oligomers.
Nature Struct. Mol. Biol. 2008, 15, 558−566.
(11) Ouberai, M.; Dumy, P.; Chierici, S.; Garcia, J. Synthesis and
Biological Evaluation of Clicked Curcumin and Clicked KLVFFA
Conjugates as Inhibitors beta-Amyloid Fibril Formation. Bioconjugate
Chem. 2009, 20, 2123−2132.
compounds with metal chelating properties for application in
Alzheimer’s disease. J. Am. Chem. Soc. 2009, 131, 1436−1451.
(23) M. Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent
Interactions in Biological Systems: Implications for Design and Use of
Multivalent Ligands and Inhibitors. Angew. Chem., Int. Ed. Engl. 1998,
37, 2755−2794.
(24) (a) Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Calixarene-
based multivalent ligands. Chem. Soc. Rev. 2007, 36, 254−266.
(b) Bowman, M. C.; Ballard, T. E.; Ackerson, C. J.; Feldheim, D. L.;
Margolis, D. M.; Melander, C. Inhibition of HIV fusion with
multivalent gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896−
6897. (c) Rosenzweig, B. A.; Ross, N. T.; Tagore, D. M.;
Jayawickramarajah, J.; Saraogi, I.; Hamilton, A. D. Multivalent protein
binding and precipitation by self-assembling molecules on a DNA
pentaplex scaffold. J. Am. Chem. Soc. 2009, 131, 5020−5021.
(25) (a) Yoshiike, Y.; Tanemura, K.; Murayama, O.; Akagi, T.;
Murayama, M.; Sato, S.; Sun, X.; Tanaka, N.; Takashima, A. New
insights on how metals disrupt amyloid beta-aggregation and their
effects on amyloid-beta cytotoxicity. J. Biol. Chem. 2001, 276, 32293−
32299. (b) Zou, J.; Kajita, K.; Sugimoto, N. Cu(2+) Inhibits the
Aggregation of Amyloid beta-Peptide(1−42) in vitro. Angew. Chem.,
Int. Ed. Engl. 2001, 40, 2274−2277.
(26) Jun, S.; Saxena, S. The aggregated state of amyloid-beta peptide
in vitro depends on Cu2+ ion concentration. Angew. Chem., Int. Ed.
Engl. 2007, 46, 3959−3961.
(27) Tougu, V.; Karafin, A.; Zovo, K.; Chung, R. S.; Howells, C.;
West, A. K.; Palumaa, P. Zn(II)- and Cu(II)-induced non-fibrillar
aggregates of amyloid-beta (1−42) peptide are transformed to amyloid
fibrils, both spontaneously and under the influence of metal chelators.
J. Neurochem. 2009, 110, 1784−1795.
(28) Rauk, A. The chemistry of Alzheimer’s disease. Chem. Soc. Rev.
2009, 38, 2698−2715.
(29) Miranda, S.; Opazo, C.; Larrondo, L. F.; Munoz, F. J.; Ruiz, F.;
Leighton, F.; Inestrosa, N. C. The role of oxidative stress in the toxicity
induced by amyloid beta-peptide in Alzheimer’s disease. Prog.
Neurobiol. 2000, 62, 633−648.
(30) Li, F.; Calingasan, N. Y.; Yu, F.; Mauck, W. M.; Toidze, M.;
Almeida, C. G.; Takahashi, R. H.; Carlson, G. A.; Flint Beal, M.; Lin,
M. T.; Gouras, G. K. Increased plaque burden in brains of APP mutant
MnSOD heterozygous knockout mice. J. Neurochem. 2004, 89, 1308−
1312.
(31) Melov, S.; Adlard, P. A.; Morten, K.; Johnson, F.; Golden, T. R.;
Hinerfeld, D.; Schilling, B.; Mavros, C.; Masters, C. L.; Volitakis, I.; Li,
Q. X.; Laughton, K.; Hubbard, A.; Cherny, R. A.; Gibson, B.; Bush, A.
I. Mitochondrial oxidative stress causes hyperphosphorylation of tau.
PLoS One 2007, 2, e536.
(12) Cairo, C. W.; Strzelec, A.; Murphy, R. M.; Kiessling, L. L.
Affinity-based inhibition of beta-amyloid toxicity. Biochemistry 2002,
41, 8620−8629.
(13) (a) Zhang, G. B.; Leibowitz, M. J.; Sinko, P. J.; Stein, S.
Multiple-peptide conjugates for binding beta-amyloid plaques of
Alzheimer’s disease. Bioconjugate Chem. 2003, 14, 86−92. (b) Chafekar,
S. M.; Malda, H.; Merkx, M.; Meijer, E. W.; Viertl, D.; Lashuel, H. A.;
Baas, F.; Scheper, W. Branched KLVFF tetramers strongly potentiate
inhibition of beta-amyloid aggregation. ChemBioChem 2007, 8, 1857−
1864. (c) Dolphin, G. T.; Chierici, S.; Ouberai, M.; Dumy, P.; Garcia,
J. A multimeric quinacrine conjugate as a potential inhibitor of
Alzheimer’s beta-amyloid fibril formation. ChemBioChem 2008, 9,
952−963.
(14) (a) Ghadiri, M. R.; Soares, C.; Choi, C. Design of an Artificial 4-
Helix Bundle Metalloprotein Via a Novel Ruthenium(II)-Assisted Self-
Assembly Process. J. Am. Chem. Soc. 1992, 114, 4000−4002. (b) M.
Lieberman, M.; Sasaki, T. Iron(II) organizes a synthetic peptide into
three-helix bundles. J. Am. Chem. Soc. 1991, 113, 1470−1471.
(15) (a) Wu, C.; Pike, V. W.; Wang, Y. Amyloid imaging: from
benchtop to bedside. Curr. Top. Dev. Biol. 2005, 70, 171−213.
(b) Ono, M.; Hayashi, S.; Kimura, H.; Kawashima, H.; Nakayama, M.;
Saji, H. Push−pull benzothiazole derivatives as probes for detecting
beta-amyloid plaques in Alzheimer’s brains. Bioorgan. Med. Chem.
2009, 17, 7002−7007.
(16) Pardridge, W. M. Alzheimer’s disease drug development and the
problem of the blood−brain barrier. Alzheimer's Dementia 2009, 5,
427−432.
(17) Clark, D. E.; Pickett, S. D. Computational methods for the
prediction of 'drug-likeness. Drug Discovery Today 2000, 5, 49−58.
(18) Ferrada, E.; Arancibia, V.; Loeb, B.; Norambuena, E.; Olea-Azar,
C.; Huidobro-Toro, J. P. Stoichiometry and conditional stability
constants of Cu(II) or Zn(II) clioquinol complexes; implications for
Alzheimer’s and Huntington’s disease therapy. Neurotoxicology 2007,
28, 445−449.
(19) Choi, J. S.; Braymer, J. J.; Nanga, R. P.; Ramamoorthy, A.; Lim,
M. H. Design of small molecules that target metal-A{beta} species and
regulate metal-induced A{beta} aggregation and neurotoxicity. Proc.
Natl. Acad. Sci. U.S.A. 2010, 107, 21990−21995.
(20) (a) Cordeiro, Y.; Machado, F.; Juliano, L.; Juliano, M. A.;
Brentani, R. R.; Foguel, D.; Silva, J. L. DNA converts cellular prion
protein into the beta-sheet conformation and inhibits prion peptide
aggregation. J. Biol. Chem. 2001, 276, 49400−49409. (b) Ferrao-
Gonzales, A. D.; Robbs, B. K.; Moreau, V. H.; Ferreira, A.; Juliano, L.;
Valente, A. P.; Almeida, F. C.; Silva, J. L.; Foguel, D. Controlling
{beta}-amyloid oligomerization by the use of naphthalene sulfonates:
trapping low molecular weight oligomeric species. J. Biol. Chem. 2005,
280, 34747−34754.
(21) (a) Stine, W. B., Jr.; Snyder, S. W.; Ladror, U. S.; Wade, W. S.;
Miller, M. F.; Perun, T. J.; Holzman, T. F.; Krafft, G. A. The
nanometer-scale structure of amyloid-beta visualized by atomic force
microscopy. J. Protein Chem. 1996, 15, 193−203. (b) Arimon, M.;
Diez-Perez, I.; Kogan, M. J.; Durany, N.; Giralt, E.; Sanz, F.;
Fernandez-Busquets, X. Fine structure study of Abeta1−42 fibrillo-
genesis with atomic force microscopy. FASEB J. 2005, 19, 1344−1346.
(22) (a) Hindo, S. S.; Mancino, A. M.; Braymer, J. J.; Liu, Y.;
Vivekanandan, S.; Ramamoorthy, A.; Lim, M. H. Small molecule
modulators of copper-induced Abeta aggregation. J. Am. Chem. Soc.
2009, 131, 16663−16665. (b) Rodriguez-Rodriguez, C.; Sanchez de
Groot, N.; Rimola, A.; Alvarez-Larena, A.; Lloveras, V.; Vidal-Gancedo,
J.; Ventura, S.; Vendrell, J.; Sodupe, M.; Gonzalez-Duarte, P. Design,
selection, and characterization of thioflavin-based intercalation
(32) Esposito, L.; Raber, J.; Kekonius, L.; Yan, F.; Yu, G. Q.; Bien-Ly,
N.; Puolivali, J.; Scearce-Levie, K.; Masliah, E.; Mucke, L. Reduction in
mitochondrial superoxide dismutase modulates Alzheimer’s disease-
like pathology and accelerates the onset of behavioral changes in
human amyloid precursor protein transgenic mice. J. Neurosci. 2006,
26, 5167−5179.
(33) Massaad, C. A.; Washington, T. M.; Pautler, R. G.; Klann, E.
Overexpression of SOD-2 reduces hippocampal superoxide and
prevents memory deficits in a mouse model of Alzheimer’s disease.
Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13576−13581.
(34) Sompol, P.; Ittarat, W.; Tangpong, J.; Chen, Y.; Doubinskaia, I.;
Batinic-Haberle, I.; Abdul, H. M.; Butterfield, D. A.; St. Clair, D. K. A
neuronal model of Alzheimer’s disease: an insight into the mechanisms
of oxidative stress-mediated mitochondrial injury. Neuroscience 2008,
153, 120−130.
(35) Wu, Y.; Wang, D. A new class of natural glycopeptides with
sugar moiety-dependent antioxidant activities derived from Ganoder-
ma lucidum fruiting bodies. J. Proteome Res. 2009, 8, 436−442.
(36) (a) Guilloreau, L.; Combalbert, S.; Sournia-Saquet, A.;
Mazarguil, H.; Faller, P. Redox chemistry of copper-amyloid-beta:
the generation of hydroxyl radical in the presence of ascorbate is linked
to redox-potentials and aggregation state. ChemBioChem 2007, 8,
1317−1325. (b) Jiang, D.; Men, L.; Wang, J.; Zhang, Y.; Chickenyen,
I
dx.doi.org/10.1021/jm3003813 | J. Med. Chem. XXXX, XXX, XXX−XXX