1690 Organometallics, Vol. 28, No. 6, 2009
Hamada and Braunstein
Table 1. Comparison of Selected Structural Data between Complexes 2a, 2b, and 2c
2a
2b
2c
Pd-C(1)
2.029(3)
2.362(1)
2.219(1)
2.265(2)
178.3(1)
176.4(2)
89.8(2)
2.024(6)
2.378(2
2.204(2)
2.2761(4)
174.8(2)
171.69(6)
90.6(2)
Pt-C(1)
2.0316(4)
2.389(2)
2.145(2)
2.231(5)
176.40(1)
-
Pd-Cl
Pt-Cl
Pd-P(1)
Pd-O(1)
C(1)-Pd-O(1)
Cl-Pd-P(1)
C(1)-Pd-Cl
P(1)-Pd-O(1)
Pt-P(1)
Pt-O(1)
C(1)-Pt-O(1)
-
C(1)-Pt-Cl
P(1)-Pt-O(1)
88.92(6)
89.8(1)
87.77(6)
89.2(1)
diethyl analog.32 In the H NMR spectrum of 4 (CDCl3), the
SiMe3 protons give rise to a signal at 0.05 ppm, the PCHP proton
to a doublet of doublets centered at 2.45 ppm (2J(PO,H) ) 22.2
different stereoelectronic properties and trans-effect/influence
and by their potential hemilabile behavior in metal complexes.33
In 2002, Drent et al. reported the use of alkoxyarylphosphine
ligands bearing sulfonic acid groups that, when combined in
situ with palladium acetate or [Pd2(dba)3], were able to promote
the formation of nonalternating polyketones from carbon
monoxide and ethylene.65,66 Furthermore, the copolymerization
of ethylene and methyl acrylate afforded copolymers with the
1
2
Hz, J(P,H) ) 1.2 Hz), whereas the magnetically inequivalent
MeO groups resonate as two doublets at 3.32 and 3.47 ppm
(3J(PO,H) ) 11.1 Hz). In the IR spectrum (KBr), the ν(PdO)
vibration was found at 1248 s cm-1
.
(34) Sen, A. Acc. Chem. Res. 1993, 26, 303.
(35) Jiang, Z.; Adams, S. E.; Sen, A. Macromolecules. 1994, 27, 2694.
(36) van Asselt, R.; Gielens, E. E. C. G.; Ru¨lke, R. E.; Vrieze, K.;
Elsevier, C. J. J. Am. Chem. Soc. 1994, 116, 977.
(37) Forbes, M. D. E.; Ruberu, S. R.; Nachtigallova, D.; Jordan, K. D.;
Barborak, J. C. J. Am. Chem. Soc. 1995, 117, 3946.
(38) Drent, E.; Budzelaar, P. H. M. Chem. ReV. 1996, 96, 663.
(39) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996,
118, 4746.
(40) Cavell, K. J. Coord. Chem. ReV. 1996, 155, 209.
(41) Sommazzi, A.; Garbassi, F. Prog. Polym. Sci. 1997, 22, 1547.
(42) Doherty, S.; Eastham, G. R.; Tooze, R. P.; Scanlan, T. H.; Williams,
D.; Elsegood, M. R. J.; Clegg, W. Organometallics 1999, 18, 3558.
(43) Nozaki, K.; Hiyama, T. J. Organomet. Chem. 1999, 576, 248.
(44) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem., Int.
Ed. 1999, 38, 428.
(45) Bianchini, C.; Lee, H. M.; Meli, A.; Oberhauser, W.; Vizza, F.;
Bru¨ggeller, P.; Haid, R.; Langes, C. Chem. Commun. 2000, 777.
(46) Schwarz, J.; Herdtweck, E.; Herrmann, W. A.; Gardiner, M. G.
Organometallics 2000, 19, 3154.
(47) Verspui, G.; Schanssema, F.; Sheldon, R. A. Angew. Chem., Int.
Ed. 2000, 39, 804.
For comparison, 4 was reacted with [Pd(µ-Cl)(dmba)]2 (dmba
) o-C6H4CH2NMe2) in a 2:1 ratio, which afforded a yellow
1
solid. The presence of two species was confirmed by H and
31P{1H} NMR spectroscopy. At room temperature, the 31P{1H}
NMR spectrum (CDCl3) consisted of two pairs of doublets at δ
34.2 (2+3J(P,P) ) 34 Hz) and 29.5 (2+3J(P,P) ) 34 Hz) and at
δ 28.2 (2J(P,P) ) 7 Hz), and 26.3 (2J(P,P) ) 7 Hz) which are
suggested to correspond to the PdO and P resonances of
[Pd(dmba){Ph2PCH(SiMe3)P(O)(OMe)2}]Cl (5) and [PdCl-
(dmba){Ph2PCH(SiMe3)P(O)(OMe)2}] (5′), respectively (for the
31P{1H} NMR spectrum, see Figure S-1, Supporting Informa-
tion). The smaller value of the J(PP) coupling constant in the
monodentate vs the chelate form of the ligand is consistent with
previous observations.9 The hemilability of coordinated 4
(Scheme 1) would result in solution in a slow equilibrium on
the NMR time scale between 5 and 5′.33
(48) Sen, A. Catalytic Synthesis of Alkene-Carbon Monoxide Copoly-
mers; Kluwer Academic: Dordrecht, The Netherlands, 2003.
(49) Green, M. J.; Cavell, K. J.; Edwards, P. G.; Tooze, R. P.; Skelton,
B. W.; White, A. H. Dalton. Trans. 2004, 3251.
(50) Kosaka, N.; Oda, T.; Hiyama, T.; Nozaki, K. Macromolecules. 2004,
37, 3159.
Addition of AgBF4 to the 5/5′ mixture in a NMR tube led to
anion exchange and induced the quantitative formation of the
(51) Durand, J.; Milani, B. Coord. Chem. ReV. 2006, 250, 542.
(52) Drent, E.; Van Broekhoven, J. A. M.; Doyle, M. J. J. Organomet.
Chem. 1991, 417, 235.
(53) Bianchini, C.; Lee, H. M.; Meli, A.; Oberhauser, W.; Peruzzini,
M.; Vizza, F. Organometallics 2002, 21, 16.
(54) Caporali, M.; Mu¨ller, C.; Staal, B. B. P.; Tooke, D. M.; Spek, A. L.;
van Leeuwen, P. W. N. M. Chem. Commun. 2005, 3478.
(55) Bianchini, C.; Bru¨ggeller, P.; Claver, C.; Czermak, G.; Dumfort,
A.; Meli, A.; Oberhauser, W.; Garcia Suarez, E. J. Dalton Trans. 2006,
2964.
(56) Abu-Surrah, A. S.; Wursche, R.; Rieger, B.; Eckert, G.; Pechhold,
W. Macromolecules 1996, 29, 4806.
(57) Brookhart, M.; Rix, F. C.; DeSimone, J. M.; Barborak, J. C. J. Am.
Chem. Soc. 1992, 114, 5894.
(58) Sen, A.; Jiang, Z. Macromolecules 1993, 26, 911.
(59) Milani, B.; Alessio, E.; Mestroni, G.; Zangrando, E.; Randaccio,
L.; Consiglio, G. J. Chem. Soc., Dalton Trans. 1996, 1021.
(60) Milani, B.; Scarel, A.; Mestroni, G.; Gladiali, S.; Taras, R.;
Carfagna, C.; Mosca, L. Organometallics 2002, 21, 1323.
(61) Scarel, A.; Milani, B.; Zangrando, E.; Stener, M.; Furlan, S.;
Fronzoni, G.; Mestroni, G.; Gladiali, S.; Carfagna, C.; Mosca, L. Organo-
metallics 2004, 23, 5593.
(62) Speiser, F.; Braunstein, P.; Saussine, L. Acc. Chem. Res. 2005, 38,
784.
(63) Green, M. J.; Britovsek, G. J. P.; Cavell, K. J.; Skelton, B. W.;
White, A. H. Chem. Commun. 1996, 1563.
cationic complex [Pd(dmba){Ph2PCH(SiMe3)P(O)(OMe)2}]-
[BF4] (6) (see Experimental Section and Figure S-2, Supporting
Information).
1. CO/Olefin Insertion into a Pd-Me Bond. The palladium
catalyzed alternating insertion of carbon monoxide and olefins
leads to the formation of polyketones, and theoretical and
experimental studies have established the kinetic and thermo-
dynamic factors that control the chain growth by alternating
CO and olefin migratory insertion into the metal-alkyl or
metal-acyl bond, respectively.5,34-51 Palladium complexes
containing P,P chelating ligands are effective in CO/
ethylene42,45-47,52-55 and CO/propylene35,56 copolymerization,
whereas aromatic olefins, such as styrene and its derivatives,
are efficiently copolymerized when N,N ligands chelate the
palladium center.57-61 The interest for unsymmetrical bidentate
ligands, particularly of the P,N-2,4,62 and P,O types,6,20,22,25,63,64
is motivated by the simultaneous presence of donor groups with
(64) Braunstein, P. J. Organomet. Chem. 2004, 689, 3953.
(65) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.
Chem. Commun. 2002, 744.
(66) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.
Chem. Commun. 2002, 964.
(31) Savignac, P.; Teulade, M. P.; Collignon, N. J. Organomet. Chem.
1987, 323, 135.
(32) Hamada, A.; Braunstein, P. Inorg. Chem. 2008, 47, 3934.
(33) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed. 2001, 40, 680.