K. Shimokawa et al. / Bioorg. Med. Chem. Lett. 19 (2009) 867–869
869
10-fold more potent than 1. The overall potency of inhibitory effect
is in the order (2>) 4 > 3 > 1. Thus, modifications on the right half of
that imitates the sequence of ternatin (2) should greatly
strengthen the bioactivity.
On the other hand, the toxic profiles of the synthetic analogues
showed an opposite tendency. Interestingly, 3 and 4 were found
References and notes
1. Steyn, P. S.; Tuinman, A. A.; van Heerden, F. R.; van Rooyen, P. H.; Wessels, P. L.;
Rabie, C. J. J. Chem. Soc. Chem. Commun. 1983, 47.
2. Shimokawa, K.; Mashima, I.; Asai, A.; Yamada, K.; Kita, M.; Uemura, D.
Tetrahedron Lett. 2006, 47, 4445.
3. Shimokawa, K.; Mashima, I.; Asai, A.; Ohno, T.; Yamada, K.; Kita, M.; Uemura, D.
Chem. Asian J. 2008, 3, 438.
4. Miller, R.; Galitsky, N. M.; Duax, W. L.; Langs, D. A.; Pletnev, V. Z.; Ivanov, V. T.
Int. J. Pept. Protein Res. 1993, 42, 539.
5. Shimokawa, K.; Yamada, K.; Kita, M.; Uemura, D. Bioorg. Med. Chem. Lett. 2007,
17, 4447.
6. Wilson, T.; Rabie, C. J.; Fincham, J. E.; Steyn, P. S.; Schipper, M. A. A. Fd. Chem.
Toxicol. 1984, 22, 275.
7. Rabie, C. J.; Lübben, A.; Schipper, M. A. A.; van Heerden, F. R.; Fincham, J. E. Int. J.
Food Microbiol. 1985, 1, 263.
8. Nakatsuka, H.; Shimokawa, K.; Miwa, R.; Yamada, K.; Uemura, D. Tetrahedron
Lett. 2009, 50, 186.
1
to be less toxic (IC50 > 240
toxicity (the expected IC50 value for cell viability is about 62–
176 M) at IC50 value for fat-accumulation inhibition. The selectiv-
lM), while 1 showed considerable cyto-
l
ity indices [SI; IC50 value for cytotoxicity/that for fat-accumulation]
of 3 and 4 were >12.3 and >43, and therefore higher than that of 1
(the expected SI is about 1–3). This result strongly suggests that the
two FurAla moieties are responsible for the potent cytotoxicity of 1
against 3T3-L1 adipocytes. Moreover, hybrid analogue 4 had a
greater SI than 2 (SI = 10). Therefore, 4 may be a plausible candidate
that possesses a selective and/or effective fat-accumulation inhibi-
tory effect against 3T3-L1 murine adipocytes.
9. Hernández, D.; Riego, E.; Francesch, A.; Cuevas, C.; Albericio, F.; Álvarez, M.
Tetrahedron 2007, 63, 9862.
23
10. Spectroscopic data for 3: [
a
]
À15.4° (c = 0.15, CHCl3); IR (CHCl3) 3326, 2933,
D
2337, 1650, 1506 cmÀ1
;
1H NMR (400 MHz, C6D6) d 7.85 (d, J = 9.6 Hz, 1H), 7.77
In summary, two novel analogues of rhizonin A (1) were de-
signed on the basis of structural hybridization with the potent
fat-accumulation inhibitor ternatin (2). The modification of the
two NMe-FurAla moieties in the structure of 1 led to analogues
with more potent and selective fat-accumulation inhibitory activ-
ities. Further chemical and biological studies on 1, including its
SAR, are now underway.
(d, J = 9.2 Hz, 1H), 7.41 (d, J = 7.2 Hz, 1H), 7.35 (s, 1H), 7.22–6.93 (m, 10H), 5.93
(dd, J = 12.4, 5.2 Hz, 1H), 5.89 (d, J = 10.0 Hz, 1H), 5.70–5.62 (m, 1H), 4.90 (t,
J = 9.2 Hz, 1H), 4.71 (t, J = 9.2 Hz, 1H), 4.38 (q, J = 6.8 Hz, 1H), 4.00–3.96 (m, 1H),
3.89 (dd, J = 15.2, 5.2 Hz, 1H), 3.66–3.58 (m, 1H), 3.40 (dd, J = 8.4, 4.8 Hz, 1H),
2.80 (dd, J = 15.2, 12.4 Hz, 1H), 2.71 (s, 3H), 2.69 (s, 3H), 2.63 (s, 3H), 2.33–2.25
(m, 1H), 2.24–2.12 (m, 1H), 1.90–1.75 (m, 2H), 1.55–1.47 (m, 1H), 1.37–1.27
(m, 2H), 1.25 (d, J = 6.8 Hz, 6H), 1.18–1.13 (m, 1H), 1.05 (d, J = 6.8 Hz, 3H), 1.02
(d, J = 6.8 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.91 (d,
J = 6.4 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H), 0.47 (d, J = 7.2 Hz, 3H); HRMS (FAB) calcd
for C46H69N7O7Na (M+Na)+ 854.5196, found 854.5175.
23
11. Spectroscopic data for 4: [
a
]
–2.5° (c = 0.15, CHCl3); IR (CHCl3) 3300, 2966,
D
2881, 2363, 1644, 1499 cmÀ1
;
1H NMR (400 MHz, C6D6) d 7.87 (d, J = 9.2 Hz,
Acknowledgments
1H), 7.62 (d, J = 9.2 Hz, 1H), 7.36 (s, 1H), 7.18–6.90 (m, 5H), 6.85 (d, J = 6.4 Hz,
1H), 6.09–5.90 (m, 2H), 5.71–5.62 (m, 1H), 5.43–5.26 (m, 1H), 4.98 (t, J = 9.2 Hz,
1H), 4.79 (t, J = 9.2 Hz, 1H), 4.39 (q, J = 7.2 Hz, 1H), 3.48–3.35 (m, 2H), 3.06 (s,
3H), 2.65 (s, 3H), 2.58 (s, 3H), 2.54–2.45 (m, 2H), 2.33–2.25 (m, 1H), 2.05–1.77
(m, 4H), 1.32 (d, J = 6.8 Hz, 3H), 1.23 (d, J = 6.8 Hz, 3H), 1.06–0.80 (m, 4H), 1.05
(d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.96 (t,
J = 4.8 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.4 Hz, 3H), 0.84 (d, J = 6.4 Hz,
3H), 0.82 (d, J = 6.4 Hz, 3H), 0.75 (d, J = 6.4 Hz, 3H); HRMS (FAB) calcd for
C43H71N7O7Na (M+Na)+ 820.5313, found 820.5291.
This study was supported in part by Grants-in-Aid for Creative
Scientific Research (Grant No. 16GS0206) and the Global COE pro-
gram in Chemistry at Nagoya University (Grant No. B-021) from
the Ministry of Education, Culture, Sports, Science, and Technology,
Japan. We are indebted to Banyu Pharmaceutical Co., Ltd. for their
financial support.