Regioselective Reductive Cleavage of
Bis-benzylidene Acetal: Stereoselective Synthesis
of Anticancer Agent OGT2378 and Glycosidase
Inhibitor 1,4-Dideoxy-1,4-imino-L-xylitol
Appu Aravind, Muthukumar Gomathi Sankar,
Babu Varghese, and Sundarababu Baskaran*
FIGURE 1. Structures of NB-DNJ (1), NB-DGJ (2), and NP-DIJ (3).
Department of Chemistry, Indian Institute of Technology
Madras, Chennai 600036, India
owing to their ability to mimic their analogous pyranoses and
furanoses in interactions with carbohydrate-processing enzymes.
Thus, because of their biomimetic properties, iminosugars are
becoming important lead compounds for drug development in
a variety of therapeutic areas, including diabetes, viral infections,
and tumor metastasis.3,4
ReceiVed January 8, 2009
Butters and co-workers have shown that the hydrophobic
substituent on iminosugars increases the enzyme inhibitory
activities.5 N-Alkylated analogues of glucose and galactose
isomers have additional inhibitory activities toward ceramide
glucosyltransferase, an enzyme involved in the biosynthesis of
glycospingolipids (Figure 1).6,7
Recently, Ladisch et al. identified a new iminosugar, N-pentyl
deoxyidonojirimycin (NP-DIJ) (3), also known as OGT2378,
as a novel and potent anticancer agent that inhibits the synthesis
of gangliosides in cancer cells with no cytotoxic or antiprolif-
erative effects.8
Very recently, we reported a highly regioselective method
for the reductive cleavage of bis-benzylidene acetals of D-
mannitol using a BF3 ·Et2O/Et3SiH reagent system under mild
conditions, which resulted in the formation of highly function-
alized chiral intermediates in good yields (Scheme 1).9
A highly regioselective reductive cleavage of the bis-
benzylidene acetal of D-mannitol was performed using a
BF3 · Et2O/Et3SiH reagent system. A chiral intermediate 6
thus obtained was efficiently utilized in the stereoselective
synthesis of the anticancer agent OGT2378 (3) and glycosi-
dase inhibitor derivative N-tosyl 1,4-dideoxy-1,4-imino-L-
xylitol (22). Chemoselective reduction of azido epoxide 10
followed by regioselective intramolecular cyclization of
amino epoxide 11 resulted in the exclusive formation of
deoxyidonojirimycin derivative 12. By changing the order
of deprotection, the chiral intermediate 6 was readily
transformed to glycosidase inhibitor derivative 22.
(3) (a) Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond; Stutz,
A. E., Ed.; Wiley-VCH: Weinheim, Germany, 1999. (b) Elbein, A. D. FASEB
J. 1991, 5, 3055. (c) Look, G. C.; Fotsch, C. H.; Wong, C.-H. Acc. Chem. Res.
1993, 26, 182. (d) Bols, M. Acc. Chem. Res. 1998, 31, 1. (e) Afarinkia, K.;
Bahar, A. Tetrahedron: Asymmetry 2005, 16, 1239. (f) Pearson, M. S. M.; Mathe´-
Allainmat, M.; Fargeas, V.; Lebreton, J. Eur. J. Org. Chem. 2005, 2159, and
references cited therein.
Generating a high level of skeletally and stereochemically
diverse intermediates from a common substrate is an especially
challenging and innovative task for synthetic organic chemists.
Meeting this formidable task is the goal of diversity-oriented
synthesis.1 Many strategies have been developed for the
diversity-oriented synthesis of biologically active and pharma-
ceutically important molecules.2 The polyhydroxylated pip-
eridines and pyrrolidines have been studied in the most detail,
(4) (a) Gruters, R. A.; Neefjes, J. J.; Tersmette, M.; de Goede, R. E. Y.;
Tulp, A.; Huisman, H. G.; Miedema, F.; Ploegh, H. L. Nature 1987, 330, 74.
(b) Bollen, M.; Stalmans, W. Eur. J. Biochem. 1989, 181, 775. (c) Tsuruoka,
T.; Fukuyasu, H.; Ishii, M.; Usui, T.; Shibahara, S.; Inouye, S. J. Antibiot. 1996,
49, 155. (d) Johnston, P. S.; Lebovitz, H. E.; Coniff, R. F.; Simonson, D. C.;
Raskin, P.; Munera, C. L. J. Clin. Endocrinol. Metab. 1998, 83, 1515. (e)
Nishimura, Y. Curr. Top. Med. Chem. 2003, 3, 575.
(5) (a) Butters, T. D.; van den Broek, L. A. G. M.; Fleet, G. W. J.; Krulle,
T. M.; Wormald, M. R.; Dwek, R. A.; Platt, F. M. Tetrahedron: Asymmetry
2000, 11, 113. (b) Butters, T. D.; Dwek, R. A.; Platt, F. M. Chem. ReV. 2000,
100, 4683. (c) Boucheron, C.; Desvergnes, V.; Compain, P.; Martin, O. R.; Lavi,
A.; Mackeen, M.; Wormald, M.; Dwek, R.; Butters, T. D. Tetrahedron:
Assymmetry 2005, 16, 1747.
(6) For biological activity, see: (a) ref 5. (b) Fan, J. Q.; Ishii, S.; Asano, N.;
Suzuki, Y. Nat. Med. 1999, 5, 112. (c) Watts, R. W. E. Philos. Trans. R. Soc.
London, Ser. B 2003, 358, 975. (d) Segraves, N. L.; Crews, P. J. Nat. Prod.
2005, 68, 118.
(7) For synthesis see: (a) Weber, K. T.; Hammache, D.; Fantini, J.; Ganem,
B. Bioorg. Med. Chem. Lett. 2000, 10, 1011. (b) Szczepina, M. G.; Johnston,
B. D.; Yuan, Y.; Svensson, B.; Pinto, B. M. J. Am. Chem. Soc. 2004, 126, 12458.
(8) (a) Weiss, M.; Hettmer, S.; Smith, P.; Ladisch, S. Cancer Res. 2003, 63,
3654. (b) For highlights, see: Borman, S. Chem. Eng. News 2005, (Sept 26), 39.
(9) (a) Aravind, A.; Baskaran, S. Tetrahedron Lett. 2005, 46, 743. (b) Aravind,
A.; Mohanty, S. K.; Pratap, T. V.; Baskaran, S. Tetrahedron Lett. 2005, 46,
2965.
(1) For reviews and seminal papers on diversity-oriented synthesis, see: (a)
Schreiber, S. L. Science 2000, 287, 1964. (b) Burke, M. D.; Berger, E. M.;
Schreiber, S. L. Science 2003, 302, 613. (c) Spring, D. R. Org. Biomol. Chem.
2003, 1, 3867. (d) Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004,
43, 46. (e) Arya, P.; Joseph, R.; Gan, Z.; Rakic, B. Chem. Biol. 2005, 12, 163.
(f) Wang, W.-W.; Ibrahem, I.; Co´rdova, A. Chem. Commun. 2006, 674.
(2) Please see ref 1. For diversity-oriented synthesis of iminosugars see: (a)
Lee, B. W.; Jeong, I.-Y.; Yang, M. S.; Choi, S. U.; Park, K. H. Synthesis 2000,
1305. (b) Pandey, G.; Kapur, M. Org. Lett. 2002, 4, 3883. (c) Takahata, H.;
Banba, Y.; Ouchi, H.; Nemoto, H. Org. Lett. 2003, 5, 2527. (d) Dhavale, D. D.;
Kumar, K. S. A.; Chaudhari, V. D.; Sharma, T.; Sabharwal, S. G.; Reddy, J. P.
Org. Biomol. Chem. 2005, 3, 3720. (e) Boucheron, C.; Compain, P.; Martin,
O. R. Tetrahedron Lett. 2006, 47, 3081.
2858 J. Org. Chem. 2009, 74, 2858–2861
10.1021/jo900030p CCC: $40.75 2009 American Chemical Society
Published on Web 03/11/2009