SCHEME 1. Preparation of Unsaturated Methyl Ester 2
Nucleophilic Addition onto
Methyl-4H-1,4-oxazine-3-carboxylate Moiety:
Short Access to 1,4-Diazine Privileged
Substructures
Elise Claveau,† Isabelle Gillaizeau,*,†
Justyna Kalinowska-Tluscik,‡ Pascal Bouyssou,† and
Ge´rard Coudert*,†
cally, starting from 1,4-oxazine 1, we outlined the preparation
under anionic conditions of R,ꢀ-unsaturated methyl ester 2
(Scheme 1).
ICOA, UMR CNRS 6005, UniVersite´ d’Orle´ans, 45067
Orle´ans Cedex 2, France, and Faculty of Chemistry,
Jagiellonian UniVersity, ul. R. Ingardena 3,
30-060 Krakow, Poland
The regioselectivity of this functionalization R to the ring
nitrogen was verified by NMR spectra and also by crystal X-ray
analysis. The ORTEP drawing of 2 confirms the flat boat
conformation of this original antiaromatic system (see Support-
ing Information).3
To determine the synthetic potential of the 1,4-oxazine ring,
which appears as a valuable building block for the synthesis of
more complex derivatives, we engaged in a study of its chemical
properties. We first examined the behavior of R,ꢀ-unsaturated
methyl ester 2, an unusual Michael acceptor, in the presence of
a range of nucleophiles. Thus compound 2 was treated, in a
basic medium (K2CO3 6 equiv, CH3CN, rt) with the following
nucleophiles: 1,2,4-triazole, 4-methoxyphenol, and thiophenol.4
The requisite adducts 3a-c, resulting from a classical Michael-
type addition reaction, were thus isolated in fair to good yields
as a single diastereomer (Table 1). The expected 2,3-trans
stereochemistry of 3 was confirmed by the small coupling
isabelle.gillaizeau@uniV-orleans.fr;
gerard.coudert@uniV-orleans.fr
ReceiVed February 10, 2009
constant observed between the H-2 and H-3 protons (3J2-3
)
1,6 Hz).5 It is worth pointing out that, in these cases, the
Michael-type addition reactions allowed an easy access to 2,3-
disubstituted oxazinic systems; moreover, the presence of the
remaining double bond must also be noted, as the use of its
reactivity might lead to many substituted morpholine deriva-
tives.6
To determine the synthetic potential of the original 1,4-
oxazine ring, which appears as a valuable building block
for the synthesis of more complex derivatives, Michael-type
nucleophilic additions were studied. According to the nature
of the nucleophile, either acyclic or cyclic derivatives were
isolated. In the presence of primary amines, a short and
efficient access to diazinic hemiaminals was described.
(2) (a) Nicolaou, K. C.; Shi, G. Q.; Namoto, K.; Bernal, F. Chem. Commun.
1998, 1757. (b) Nicolaou, K. C.; Shi, G. Q.; Gunzner, J. L.; Ga¨rtner, P.; Yang,
Z. J. Am. Chem. Soc. 1997, 119, 5467. (c) Huffman, M. A.; Yasuda, N. Synlett
1999, 471. (d) Jiang, J. L.; Devita, R. J.; Doss, G. A.; Goulet, M. T.; Wyvratt,
M. J. J. Am. Chem. Soc. 1999, 121, 593. (e) Moraes, D. N.; Barrientos-
Astigarraga, R. E.; Castelani, P.; Comasseto, J. V. Tetrahedron 2000, 56, 3327.
(f) Coe, J. W. Org. Lett. 2000, 2, 4205. (g) Wu, J.; Yang, Z. J. Org. Chem.
2001, 66, 7875. (h) Takakura, H.; Sasaki, M.; Honda, S.; Tachibana, K. Org.
Lett. 2002, 2771. (i) Lo Galbo, F.; Occhiato, E. G.; Guarna, A.; Faggi, C. J.
Org. Chem. 2003, 68, 6360. (j) Campbell, I. B.; Guo, J.; Jones, E.; Steel, P. G.
Org. Biomol. Chem. 2004, 2, 2725. (k) Larsen, U. S.; Martiny, L.; Begtrup, M.
Tetrahedron Lett. 2005, 46, 4261. (l) Occhiato, E. G.; Lo Galbo, F.; Guarna, A.
J. Org. Chem. 2005, 70, 7324. (m) Tsukano, C.; Ebine, M.; Sasaki, M. J. Am.
Chem. Soc. 2005, 127, 4326. (n) Fuwa, H.; Ebine, M.; Sasaki, M. J. Am. Chem.
Soc. 2006, 128, 9648. (o) Fuwa, H.; Ebine, M.; Bourdelais, A. J.; Baden, D. G.;
Sasaki, M. J. Am. Chem. Soc. 2006, 128, 16989. (p) Ebine, M.; Fuwa, H.; Sasaki,
M. Org. Lett. 2008, 10, 2275. (q) Fuwa, H.; Sasaki, M. J. Org. Chem. 2009, 74,
212. (r) Ebran, J.-P.; Hansen, A. L.; Gøgsig, T. M.; Skrydstrup, T. J. Am. Chem.
Soc. 2007, 129, 6931. (s) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup,
T. J. Org. Chem. 2007, 72, 6464. (t) Lindhart, A. T.; Skrydstrup, T. Chem. Eur.
J. 2008, 14, 8756.
Heterocycles display an intrinsic reactivity that enables rich,
versatile, and productive transformations. Taking into account
their ubiquitous presence in natural products and drugs, the
development of new, fast, and efficient preparative protocols
for these structures remains a fundamental task in organic
synthesis. As part of our interest in using readily available enol
phosphates for the synthesis of new heterocyclic compounds,1,2
we have recently described an original and efficient access to
1,4-oxazine and substituted 1,4-oxazine derivatives.1c Specifi-
(3) (a) Borbulevych, O. Y.; Shishkin, O. V. J. Mol. Struct. 1998, 446, 11.
(b) Trinajstic, N. J. Mol. Struct. 1971, 8, 236.
(4) For 1,4-dihydropyrazine derivatives, see: Rodrigues, A.; Ferreira, P. M.;
Monteiro, L. S. Tetrahedron 2004, 60, 8489.
† University of Orle´ans.
‡ Jagiellonian University.
(1) (a) Mousset, D.; Gillaizeau, I.; Sabatie´, A.; Bouyssou, P.; Coudert, G. J.
Org. Chem. 2006, 71, 5993. (b) Mousset, D.; Gillaizeau, I.; Hassan, J.; Lepifre,
F.; Bouyssou, P.; Coudert, G. Tetrahedron Lett. 2005, 46, 3703. (c) Claveau,
E.; Gillaizeau, I.; Blu, J.; Bruel, A.; Coudert, G. J. Org. Chem. 2007, 72, 4832.
(d) Cottineau, B.; Gillaizeau, I.; Farard, J.; Auclair, M.-L.; Coudert, G. Synlett
2007, 1925. (e) Chaignaud, M.; Gillaizeau, I.; Ouhamou, N.; Coudert, G.
Tetrahedron 2008, 64, 8059.
(5) Two NMR signals were observed for each oxazinic protons that
corresponded to the two conformers (transdiaxial and transdiequatorial structures)
of 3. This was confirmed by performing NMR studies in DMSO-d6 at 80°C;
splitting of the signals was not observed anymore.
(6) Reviews: (a) Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E; van Delft,
F. L; Blaauw, R. H; Rutjes, F. P. J. T. Synthesis 2004, 641. (b) Sladojevich, F.;
Trabocchi, A.; Guarna, A. Org. Biomol. Chem. 2008, 6, 3328.
10.1021/jo900291f CCC: $40.75
Published on Web 03/11/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 2911–2914 2911