R. M. Phelan et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1261–1263
1263
cephalosporin while 6 was otherwise stable in the absence of bL
References and notes
(Fig. 2). To better evaluate how efficient a substrate 6 is for the
aforementioned bL, kinetic parameters were measured using an as-
say previously described.13 It was determined that compound 6
1. Greco, O.; Dachs, G. U. J. Cell. Physiol. 2001, 187, 22.
2. Jung, M. Mini Rev. Med. Chem. 2001, 1, 399.
3. Kerr, D. E.; Li, Z. G.; Siemers, N. O.; Senter, P. D.; Vrudhula, V. M. Bioconjugate
Chem. 1998, 9, 255.
4. Vrudhula, V. M.; Svensson, H. P.; Senter, P. D. J. Med. Chem. 1997, 40, 2788.
5. Rodrigues, M. L.; Carter, P.; Wirth, C.; Mullins, S.; Lee, A.; Blackburn, B. K. Chem.
Biol. 1995, 2, 223.
6. Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.; Burres, N.; Feng, L.;
Whitney, M.; Roemer, K.; Tsien, R. Y. Science 1998, 279, 84.
7. Li, Q.; Lee, J. Y.; Castillo, R.; Hixon, M. S.; Pujol, C.; Doppalapudi, V. R.; Shepard,
H. M.; Wahl, G. M.; Lobl, T. J.; Chan, M. F. Antimicrob. Agents Chemother. 2002,
46, 1262.
8. Gao, W.; Xing, B.; Tsien, R. Y.; Rao, J. J. Am. Chem. Soc. 2003, 125, 11146.
9. Tang, X.; Cai, T.; Wang, P. G. Bioorg. Med. Chem. Lett. 2003, 13, 1687.
10. Vrudhula, V. M.; Svensson, H. P.; Kennedy, K. A.; Senter, P. D.; Wallace, P. M.
Bioconjugate Chem. 1993, 4, 334.
11. Alexander, R. P.; Beeley, N. R. A.; Odriscoll, M.; Oneill, F. P.; Millican, T. A.; Pratt,
A. J.; Willenbrock, F. W. Tetrahedron Lett. 1991, 32, 3269.
12. Svensson, H. P.; Frank, I. S.; Berry, K. K.; Senter, P. D. J. Med. Chem. 1998, 41,
1507.
had a molar absorbtivity (e) of 9640 l
molꢀ1 cmꢀ1, which enabled
monitoring of b-lactam hydrolysis at 267 nm. Compound 6 was
evaluated against the commercially available Enterobacter cloacae
b-lactamase (EClbL) (Sigma, St. Louis, MO). Initial velocities were
measured at varying concentrations of 6 (25–250
the Michaelis–Menton equation to establish Km and Vmax. Com-
pound 6 was found to have a Km of 95.4 M and a Vmax of
3.21
mol minꢀ1 mgꢀ1, which compare favorably to previously re-
lM) and fit to
l
l
ported cephalosporin conjugates.3,4,13 To determine the 5-FU yield
when 6 is activated, a reaction of 6 with the EClbL was run under
conditions identical to the previous stability assay. The products
of this reaction were compared to a standard curve of known con-
centrations of 5-FU to determine the percentage of 5-FU released
using the previously established HPLC method.26 It was deter-
mined that compound 6 is activated to 5-FU in a 78 2% yield.
The combined data show that compound 6 is a good substrate
for a bL, activation occurs in an efficient manner and compound
6 is stable in a neutral aqueous environment until specifically acti-
vated by the bL (Fig. 2).
13. Svensson, H. P.; Kadow, J. F.; Vrudhula, V. M.; Wallace, P. M.; Senter, P. D.
Bioconjugate Chem. 1992, 3, 176.
14. Vrudhula, V. M.; Svensson, H. P.; Senter, P. D. J. Med. Chem. 1995, 38, 1380.
15. Jungheim, L. N.; Shepherd, T. A.; Kling, J. K. Heterocycles 1993, 35, 339.
16. Hanessian, S.; Wang, J. G. Can. J. Chem. 1993, 71, 896.
17. Jungheim, L. N.; Shepherd, T. A.; Meyer, D. L. J. Org. Chem. 1992, 57, 2334.
18. Rothenberg, M.; Navarro, M.; Butts, C.; Bang, Y.; Cox, J.; Goel, R.; Gollins, S.; Siu,
L.; Cunningham, D. Ann. Oncol. 2007, 18, 17.
19. Compound 4: 1H NMR (300 MHz, CDCl3) d 3.53 (2H, qab, J = 18.6, 30.6 Hz), 3.81
(3H, s), 3.85 (2H, s), 4.45 (2H, qab, J = 11.7, 17.7 Hz), 4.94 (1H, d, J = 7.8 Hz), 5.12
(2H, s), 5.82 (1H, dd, J = 3.0 Hz), 6.23 (1H, d, J = 9.3 Hz), 6.89 (2H, d, J = 11.7 Hz),
6.96 (2H, m), 7.30 (1H, m), 7.34 (2H, d, J = 11.7 Hz); 13C NMR (100 MHz, CDCl3)
d 27.9, 37.0, 43.2, 55.2, 57.5, 59.1, 68.2, 114.0, 125.5, 126.0, 126.1, 126.5, 127.6,
127.9, 130.7, 134.6, 159.9, 161.0, 164.5, 169.9; HRMS (FAB, MH+) calcd for
C22H21ClN2O5S2: 493.1. Found: 493.1.
We have designed a straight-forward synthesis of a bL-activat-
able 5-FU-cephalosporin conjugate to release the cytotoxic agent
5-FU. Preparation of this compound was readily achieved through
careful attention to two key steps in the synthesis. The protection
of the 5-FU amide nitrogen with a Boc group improved solubility in
organic solvents and avoided the formation of regioisomers. Sec-
ond, the use of KOSiMe3 in the cephem 30-chloride displacement
reaction proceeded without formation of the D2 isomer, circum-
venting the customary oxidation and reduction sequence at the
cephem sulfur to restore the D3 double bond. The use of KOSiMe3
offers a general approach for attachment of nucleophilic chemical
moieties at the 30 carbon while keeping the D3 cephem intact.
The stability of compound 6 in the absence of a bL and its favorable
kinetic parameters for hydrolysis in its presence demonstrate the
potential for compound 6 to be used in ADEPT or GDEPT strategies
against a range of human carcinoma cell lines, and open the way
for its evaluation it in vivo.
20. Compound 2: 1H NMR (300 MHz, CDCl3) d 1.52 (9H, s), 8.18 (1H, d, J = 7.2 MHz),
11.9 (1H, s); 13C NMR (75 MHz, CDCl3) d 27.7, 88.1, 123.5, 139.0, 146.1, 147.5;
HRMS (FAB, MH+) calcd for C9H11FN2O4: 231. Found: 231.
21. Jacobsen, M. F.; Knudsen, M. M.; Gothelf, K. V. J. Org. Chem. 2006, 71,
9183.
22. Kaiser, G. V.; Cooper, R. D. G.; Koehler, R. E.; Murphy, C. F.; Webber, J. A.;
Wright, I. G.; Vanheyni, E. J. Org. Chem. 1970, 35, 2430.
23. Lee, M.; Hesek, D.; Mobashery, S. J. Org. Chem. 2005, 70, 367.
24. Compound 5: 1H NMR (400 MHz, CDCl3) d 1.60 (9H, s) 3.36 (2H, d, J = 7.6 Hz),
3.81 (3H, s), 3.84 (2H, s), 4.89 (1H, d, J = 4.8 Hz), 4.95 (2H, qab, Jab = 15.2,
116.0 Hz), 5.24 (2H, s), 5.78 (1H, dd, J = 4.8 Hz), 6.41 (1H, d, J = 9.2 Hz), 6.98
(2H, d, J = 6.8 Hz), 7.02 (3H, m), 7.36 (2H, d, J = 6.4 Hz), 7.93 (1H, d, J = 5.0 Hz);
13C NMR (100 MHz, CDCl3) d 26.1, 27.7, 29.6, 37.0, 43.1, 55.2, 57.1, 59.1, 68.0,
88.1, 113.9, 122.3, 122.7, 123.3, 126.0, 126.5, 126.8, 127.5, 127.8, 130.5, 134.5,
138.3, 140.7, 161.4, 164.2, 169.9; HRMS (FAB, MH+) calcd for C31H31FN4O9S2:
687.1. Found: 687.1.
25. Compound 6: 1H (300 MHz, DMSO-d6) d 3.51 (2H, qab, J = 17.4, 29.4 Hz), 3.75
(2H, s), 4.79 (2H, qab, J = 14.7, 67.2 Hz), 5.00 (1H, d, J = 4.8 Hz), 5.64 (1H, q,
J = 4.2 Hz), 6.95 (2H, m), 7.35 (1H, d, J = 3.6 Hz), 9.08 (1H, d, J = 8.4 Hz); 13C
(75 MHz, DMSO-d6) d 24.7, 35.5, 57.0, 58.6, 124.9, 126.0, 126.4, 129.2, 136.6,
137.7, 140.7, 149.9, 157.3, 157.6, 162.8, 164.3, 169.7; HRMS (FAB, MH+) calcd
for C18H15FN4O6S2: 467. Found: 467.
26. The bL cleavage assay was preformed on an Agilent (Santa Clara, CA) 1100
HPLC using a Phenomenex (Torrance, CA) Luna C-18 reverse phase column. All
compounds were run using an isocratic mobile phase consisting of 30%
acetonitrile in 0.1% trifluoroacetic acid. All compounds were monitored at
267 nm.
Acknowledgments
We gratefully acknowledge a seed grant from the Institute for
NanoBioTechnology at The Johns Hopkins University for financial
support. Otsuka Chemical Corporation (Osaka, Japan) is thanked
for donation of a sample of 7-amino-3-chloromethyl-3-cephem-
4-carboxylic acid p-methoxy-benzyl ester. We thank T. Soka for
helpful discussions in preparation for the in vivo applications of
the conjugate.