2352
Organometallics 2009, 28, 2352–2355
Synthesis and Characterization of NH-triazole-Bound Rhodium(I)
Complexes: Substituted-Group-Controlled Regioselective
Coordination
Haifeng Duan, Sujata Sengupta, Jeffrey L. Petersen, and Xiaodong Shi*
C. Eugene Bennett Department of Chemistry, West Virginia UniVersity, Morgantown, West Virginia 26506
ReceiVed NoVember 23, 2008
referred to as “click chemistry”) allows the formation of 1,4-
substituted triazoles.8 Since then, the importance of these
compounds has been continually demonstrated in research fields
as diverse as material science,9 chemical biology10 and medicinal
chemistry.11 Surprisingly, to date, there are still very few studies
regarding the application of 1,2,3-triazole compounds in metal
coordination. One recent example is the NCN-pincer Pd and Pt
coordination with 1,4-disubstituted triazole complexes reported
by van Koten, Gebbink, and co-workers.12 Meanwhile, the
synthesis of triazole-based P-N ligands, the clickphines, was
recently reported and their Pd complexes were applied as
effective catalysts for allylic alkylation.13 Overall, among the
few catalytic systems reported in the literature, the N-substituted
triazoles were dominant, due to the well-developed click
chemistry in the synthesis of these ligands. The NH-triazoles,
which have been reported as good binding ligands even in
neutral form,14 on the other hand, have been much less studied.
To the best of our knowledge, NH-triazoles have not been
appliled to catalytic systems, nor has any crystal structures of
a NH-triazole-bound transition-metal complex been reported so
far. In this paper, we report the crystal structure of triazole-
Summary: 4,5-Disubstituted NH-1,2,3-triazoles (TRIA) were
used to coordinate with Rh(I) metal cation, forming a new class
of triazole-bridged [Rh(COD)(TRIA)]2 complexes in near-
quantitatiVe yields. X-ray crystallography studies reVealed that
the C-4-substituted groups effectiVely controlled the triazole
binding sites, resulting in different coordination patterns. In
addition, these air- and moisture-stable [Rh(COD)(TRIA)]2
complexes showed effectiVe catalytic properties in Pauson-Khand
reactions, with superior stability.
Advances in transition-metal catalysis, a primary approach
in modern synthesis, are strongly correlated with a fundamental
understanding of the ligand-metal coordination.1 In addition
to the unique chemical properties of individual metal elements,
binding ligands are crucial in determining the overall reactivity
of complexes.2 Numerous efforts have been put into the
development/discovery of novel metal binding ligands in
adjusting the chemical and stereo selectivity of the metal
complexes.3 Some successful examples, such as 2-(diphe-
nylphosphino)-1-(2-(diphenylphosphino)naphthalen-1-yl)naph-
thalene (BINAP)4 and salen,5 have been extensively applied in
academic research and industrial synthesis. It has been continu-
ously demonstrated in the literature that ligands with unique
functionality can significantly influence the reactivity of the
transition-metal complexes/catalysts. Therefore, effective new
catalytic systems are highly desirable.
(8) For reviews see: (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. (b) Kolb,
H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40,
2004–2021. (c) Bock, V. D.; Hiemstra, H.; Van Maarseveen, J. H. Eur. J.
Org. Chem. 2006, 51–68. (d) Moses, J. E.; Moorhouse, A. D. Chem. Soc.
ReV. 2007, 36, 1249–1262.
(9) (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel,
A.; Voit, B.; Pyun, J.; Fre´chet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928–3932. (b) Aucagne, V.; Ha¨nni, K. D.;
Leigh, D. A.; Lusby, P. J.; Walker, D. B. J. Am. Chem. Soc. 2006, 128,
2186–2187. (c) Ye, C. F.; Gard, G. L.; Winter, R. W.; Syvret, R. G.;
Twamley, B.; Shreeve, J. M. Org. Lett. 2007, 9, 3841–3844. (d) Liu, Q. C.;
Zhao, P.; Chen, Y. M. J. Polym. Sci., Part A: Polym. Chem. 2007, 45,
3330–3341.
Having a strong dipole moment, the 1,2,3-triazoles are
considered as potential ligands in coordination with transition
metals.6 However, few studies have been reported regarding
triazole-metal binding before 2000 due to the limited avail-
ability of functional triazole derivatives.7 The discovery of Cu-
catalyzed azide alkyne 1,3-dipolar cycloaddition (CuAAC; also
* To whom correspondence should be addressed. E-mail: Xiaodong.Shi@
mail.wvu.edu.
(1) (a) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals, 4th ed.; Wiley-Interscience: New York, 2005; (b) Hegedus, L. S.
Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed.;
University Science Books: Mill Valley, CA, 1999.
(2) Fu, G. C. Acc. Chem. Res. 2006, 39, 853–860.
(3) Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405–
5432.
(4) For recent reviews: (a) Shimizu, H.; Nagasaki, I.; Matsumura, K.;
Sayo, N.; Saito, T. Acc. Chem. Res. 2007, 40, 1385–1393. (b) Berthod, M.;
Mignani, G.; Woodward, G.; Lemaire, M. Chem. ReV. 2005, 105, 1801–
1836.
(10) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc.
2004, 126, 15046–15047. (b) Moorhouse, A. D.; Santos, A. M.; Gunaratnam,
M.; Moore, M.; Neidle, S.; Moses, J. E. J. Am. Chem. Soc. 2006, 128,
15972–15973. (c) Kumar, R.; El-Sagheer, A.; Tumpane, J.; Lincoln, P.;
Wilhelmsson, L. M.; Brown, T. J. Am. Chem. Soc. 2007, 129, 6859–6864.
(11) (a) Manetsch, R.; Krasiski, A.; Radi, Z.; Raushel, J.; Taylor, P.;
Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809–12818.
(b) Wang, J.; Sui, G.; Mocharla, V. P.; Lin, R. J.; Phelps, M. E.; Kolb,
H. C.; Tseng, H.-R. Angew. Chem., Int. Ed. 2006, 45, 5276–5281. (c)
Sugawara, A.; Sunazuka, T.; Hirose, T.; Nagai, K.; Yamaguchi, Y.; Hanaki,
H.; Sharpless, K. B.; Omura, S. Bioorg. Med. Chem. Lett. 2007, 17, 6340–
6344. (d) Chen, H.; Taylor, J. L.; Abrams, S. R. Bioorg. Med. Chem. Lett.
2007, 17, 1979–1983.
(5) (a) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421–431. (b) Katsuki,
T. Synlett 2003, 3, 281–297.
(12) Suijkerbuijk, B. M. J. M.; Aerts, B. N. H.; Dijkstra, H. P.; Lutz,
M.; Spek, A. L.; van Koten, G.; Klein Gebbink, R. J. M. Dalton Trans.
2007, 1273–1276.
(13) Detz, R. J.; Arevalo Heras, S.; de Gelder, R.; van Leeuwen,
P. W. N. M.; Hiemstra, H.; Reek, J. N. H.; van Maarseveen, J. H. Org.
Lett. 2006, 8, 3227–3231.
(14) According to ref 12, the Ka value for NH-triazole to NCN-pincer
Pd complex is 4.16, while the value for pyridine is 19.5 and for aniline is
0.30.
(6) (a) Busetto, L.; Marchetti, F.; Zucchini, S.; Zanotti, V. Inorg. Chim.
Acta 2005, 358. (b) Bronisz, R. Inorg. Chem. 2005, 44, 4463. (c) Armstrong,
D. R.; Davies, R. P.; Haigh, R.; Hendy, H. M.; Raithby, P. R.; Snaith, R.;
Wheatley, A. E. H. Eur. J. Inorg. Chem. 2003, 3363–3366.
(7) (a) Olson, J. R.; Yamauchi, M.; Butler, W. M. Inorg. Chim. Acta
1985, 99, 121–125. (b) Purnell, L. G.; Shepard, J. C.; Hodgson, D. J. J. Am.
Chem. Soc. 1975, 97, 2376–2377.
10.1021/om8011163 CCC: $40.75
2009 American Chemical Society
Publication on Web 03/25/2009