Journal of Agricultural and Food Chemistry
Article
and antitumor activities.18,19 In the present work, while the
hydrazide and hydrazone were cyclodehydrated to the corre-
sponding 1,3,4-oxadiazole and oxadiazoline derivatives, the in vivo
fungicidal activity was maintained. Especially, when Y was 1,3,4-
oxadiazoline, its activity was improved to a certain extent. The
evaluation of the further fungicidal bioassay and other tests about
the bioactive spectra is under going.
In summary, a novel series of 1,3,4-oxadiazole derivatives
containing a 5-phenyl-2-furan moiety were synthesized by an
efficient approach with microwave irradiation in good yields.
Their antifungal tests indicated that most of the title compounds
and the intermediates diacylhydrazine and acylhydrazone
showed fungicidal activity obviously against B. cinerea and
R. solanii at 500 μg/mL in vivo. Meanwhile, all of the tested
compounds were found safe for the plants. Among the tested
compounds, some showed superiority over the commercial
fungicides during the present studies. These compounds could
be lead compounds for further discovery of fungicides.
M.; Mahfouz, N. M.; EL-Gendy, M. A. Novel 5-(2- hydroxyphenyl)-3-
substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising
anticancer agents. Bioorg. Med. Chem. 2006, 14 (4), 1236−1246.
(5) (a) Chavan, R. S.; Nirmal, D. A.; Bhosale, A. V. Synthesis and
biological evaluation of 1,3,4-oxadiazole derivatives as novel analgesic
and antiinflammatory agents. Asian J. Chem. 2011, 23 (9), 3919−3922.
(b) Jayashankar, B.; Lokanath Rai, K. M.; Baskaran, N.; Sathish, H. S.
Synthesis and pharmacological evaluation of 1,3,4-oxadiazole bearing
bis(heterocycle) derivatives as anti-inflammatory and analgesic agents.
Eur. J. Med. Chem. 2009, 44 (10), 3898−3902.
(6) Bankar, G. R.; Nampurath, G. K.; Nayak, P. G.; Bhattacharya, S. A
possible correlation between the correction of endothelial dysfunction
and normalization of high blood pressure levels by 1,3,4-oxadiazole
derivative, an L-type Ca2+ channel blocker in deoxycorticosterone
acetate and NG-nitro-L-arginine hypertensive rats. Chem.-Biol. Interact.
2010, 183 (2), 327−331.
(7) Vansdadia, R. N.; Roda, K. P.; Parekh, H. Studies on 1,3,4-
oxadiazoles. Part X. Preparation and antimicrobial activity of 2-aryl-5-
p-phenylsulfophenyl-1,3,4- oxadiazoles. J. Indian Chem. Soc. 1988, 65
(11), 809−811.
(8) Liras, S.; Allen, M. P.; Segelstein, B. E. A mild method for the
preparation of 1,3,4-oxadiazoles: Triflic anhydride promoted cycliza-
tion of diacylhydrazines. Synth. Commun. 2000, 30 (3), 437−443.
(9) Al-Talib, M.; Tashtoush, H.; Odeh, N. A convenient synthesis of
alkyl and aryl substituted bis-1,3,4-oxadiazoles. Synth. Commun. 1990,
20 (12), 1811−1817.
(10) Wang, S.; Li, Z. T.; Hua, W. T. Synthesis and characterization of
fully conjugated schiff base macrocycles containing 1,3,4-oxadiazole
moiety. Synth. Commun. 2002, 32 (21), 3339−3345.
(11) (a) Polshettiwar, V.; Varma, R. S. Greener and expeditious
synthesis of bioactive heterocycles using microwave irradiation. Pure Appl.
Chem. 2008, 80 (4), 777−790. (b) Chauveau, E.; Marestin, C.; Schiets,
F.; Mercier, R. Synthesis of 2,4,5-triarylimidazoles in aqueous solution, under
microwave irradiation. Green Chem. 2010, 12 (6), 1018−1022. (c) Insuasty,
B.; Garcia, A.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J. Synthesis of
novel 6,6a,7,8-tetrahydro-5H-naphtho [1,2-e]pyrimido[4,5-b][1,4]
diazepines under microwave irradiation as potential anti-tumor agents.
Eur. J. Med. Chem. 2010, 45 (7), 2841−2846.
(12) (a) Owens, R. G. Plant disease control by 5-nitrofuran
derivatives in relation to chemical structure. Contrib. Boyce Thompson
Inst. 1959, 20, 141−149. (b) Kupchik, E. J.; Pisano, M. A.; Whalen, S.
M.; Lynch, J. Synthesis and antimicrobial activity of triorganotin 5-
nitro-2-furoates. J. Pharm. Sci. 1982, 71 (3), 311−314.
(13) (a) Wei, T.; Chen, J.; Wang, X.; Yang, S. Studies on the
synthesis and biological activity of N-aryl-N′-(5-aryl-2-furoyl)thiourea
derivatives. Chem. J. Chin. Univ. 1992, 13 (9), 1217−1221. (b) Chen,
J.; Wei, T.; Wang, X.; Yang, S. Studies on the synthesis and biological
activity of N-aryl-N′-(5-aryl-2-furoyl)thiourea derivatives. Chin. Chem.
Lett. 1991, 2 (6), 433−436.
(14) (a) Ke, S.; Wei, T.; Xue, S.; Duan, L.; Li, J. Phase transfer
catalyzed synthesis under ultrasonic irradiation and bioactivity of N′-
(4,6-disubstituted-pyrimidin-2- yl)-N-(5-aryl-2- furoyl) thiourea de-
rivatives. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005,
44B (9), 1957−1960. (b) Xue, S.; Ke, S.; Duan, L.; Li, J. Ultrasonically
irradiated synthesis and bioactivity of 5,7-disubstituted-2-(5-aryl-2-
furoylimino)-[1,2,4]-thiadiazolo[2,3-a]pyrimidine derivatives. Chin. J.
Org.Chem. 2004, 24 (12), 1610−1613. (c) Xue, S.; Bian, W. Method
for preparation and application of 2-(5-o-chlorophenyl-2-furoylamino)-
acetamidopyrimidine derivatives. CN 101220022 A, 2008.
(15) (a) Kort, M. E.; Drizin, I.; Gregg, R. J.; Scanio, M. J. C.; Shi, L.;
Gross, M. F.; Atkinson, R. N.; Johnson, M. S.; Pacofsky, G. J.; Thomas,
J. B.; Carroll, W. A.; Krambis, M. J.; Liu, D.; Shieh, C. C.; Zhang, X. F.;
Hernandez, G.; Mikusa, J. P.; Zhong, C. M.; Joshi, S.; Honore, P.;
Roeloffs, R.; Marsh, K. C.; Murray, B. P.; Liu, J. R.; Werness, S.;
Faltynek, C. R.; Krafte, D. S.; Jarvis, M. F.; Chapman, M. L.; Marron,
B. E. Discovery and Biological Evaluation of 5-Aryl-2-furfuramides,
Potent and Selective Blockers of the Nav1.8 Sodium Channel with
Efficacy in Models of Neuropathic and Inflammatory Pain. J. Med.
Chem. 2008, 51 (3), 407−416. (b) Burch, H. A.; White, R. E.; Wright,
AUTHOR INFORMATION
Corresponding Author
Funding
Financial support was provided by the National Natural Science
Foundation of China (21102173), the National Key Project for
Basic Research (2010CB126104), the Japan Society for the
Promotion of Science (JSPS, ID No. P10100), and Advanced
Multi-Career Training Program for Postdoctoral Scholars from
JST.
■
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Suresh Kumar, G. V.; Rajendraprasad, Y.; Mallikarjuna, B. P.;
Chandrashekar, S. M.; Kistayya, C. Synthesis of some novel 2-
substituted-5-[isopropylthiazole] clubbed 1,2,4-triazole and 1,3,4-
oxadiazoles as potential antimicrobial and antitubercular agents. Eur.
J. Med. Chem. 2010, 45 (5), 2063−2074. (b) Farshori, N. N.; Banday,
M. R.; Ahmad, A.; Khan, A. U.; Rauf, A. Synthesis, characterization,
and in vitro antimicrobial activities of 5-alkenyl/hydroxyl-alkenyl-2-
phenylamine-1,3,4-oxadiazoles and thiadiazoles. Bioorg. Med. Chem.
Lett. 2010, 20 (6), 1933−1938.
(2) (a) Khanum, S. A.; Shashikanth, S.; Sathyanarayana, S. G.;
Lokesh, S.; Deepak, S. A. Synthesis and antifungal activity of 2-
azetidinonyl-5-(2-benzoylphenoxy) methyl-1,3,4-oxadiazoles against
seed-borne pathogens of Eleusine coracana (L.) Gaertn. Pest Manage.
Sci. 2009, 65 (7), 776−780. (b) Ishii, M.; Jorge, S. D.; de Oliveira, A.
A.; Palace-Berl, F.; Sonehara, I. Y.; Pasqualoto, K. F. M.; Tavares, L. C.
Synthesis, molecular modeling and preliminary biological evaluation of
a set of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole as
potential antibacterial, anti-Trypanosoma cruzi and antifungal agents.
Bioorg. Med. Chem. 2011, 19 (21), 6292−6301. (c) Xu, W. M.; Han, F.
F.; He, M.; Hu, D. Y.; He, J.; Yang, S.; Song, B. A. Inhibition of
Tobacco Bacterial Wilt with Sulfone Derivatives Containing an 1,3,4-
Oxadiazole Moiety. J. Agric. Food Chem. 2012, 60 (4), 1036−1041.
(3) Cui, Z. N.; Yang, L.; Li, X. C.; Wang, Z.; Yang, X. L. Progress in
the study on the synthesis and the activities as insect growth regulators
of 2,5-disubstituted 1,3,4-oxadiazoles. Chin. J. Org. Chem. 2006, 26
(12), 1647−1656.
(4) (a) Bondock, S.; Adel, S.; Etman, H. A.; Badria, F. A. Synthesis
and antitumor evaluation of some new 1,3,4-oxadiazole-based
heterocycles. Eur. J. Med. Chem. 2012, 48, 192−199. (b) Somani, R.
R.; Shirodkar, P. Y.; Kadam, V. J. Synthesis and anticancer evaluation of
some newer 2,5-disubstituted-1,3,4-oxadiazole analogues. Lett. Drug Des.
Discovery 2008, 5 (6), 364−368. (c) Aboraia, A. S.; Abdel-Rahman, H.
11655
dx.doi.org/10.1021/jf303807a | J. Agric. Food Chem. 2012, 60, 11649−11656