C O M M U N I C A T I O N S
656. Actually, it is not clear whether the FCMA structure claimed in
the paper is correct (see figure below) (personal communication from
Dr. M. Isaka).
Our data do not allow us to distinguish between several obvious
variations of the general scheme suggested in Scheme 6. Globally,
the teaching seems to be that an otherwise unfavorable formation
of a FCMA can be driven to product 26 through neighboring
hydroxyl participation to enable the 1,3-OfN acyl transfer at room
temperature.18
The formation of 26 points to an eventual approach to serine
ligation.20 In the succeeding paper, we probe subtle but important
mechanistic issues as well as new directions for the 2CC reac-
tion.
For cyclic structures of formimidate-carboxylate mixed anhydride, see:
(f) Black, D. S. C.; Boscacci, A. B. Aus. J. Chem. 1977, 30, 1109. (g)
Kobayashi, S.; Tsukamoto, Y.; Saegusa, T. Macromolecules 1990, 23, 2608.
(h) Reed, P. E.; Katzenellenbogen, J. A. J. Med. Chem. 1991, 34, 1162. (i)
Gomory, A.; Somogyi, A.; Tamas, J.; Stajer, G.; Bernath, G.; Komaromi,
I. Int. J. Mass Spec. Ion Proc. 1991, 107, 225.
Acknowledgment. Support for this research was provided by
the National Institutes of Health (CA28824 to S.J.D.). This
investigation was supported by a “Research Centers in Minority
Institutions” award, RR-03037 (to L.J.T.), from the National
Center for Research Resources, National Institutes of Health.
Special thanks go to Rebecca Wilson for editorial consultation
and Dana Ryan for assistance with the preparation of the
manuscript. We thank Dr. Jianglong Zhu and Dr. Brendan
Crowley for their helpful discussions. We thank Dr. George
Sukenick for NMR spectroscopic assistance, and Ms. Hui Fang
and Ms. Sylvi Rusli for mass spectrometric assistance. We also
thank Prof. Shaabani for supplying experimental details regarding
ref 5a and Dr. Isaka for a personal communication regarding
ref 5e.
(6) In some instances, spectroscopic suggestion of such an intermediate has
been described, for example: (a) Hou, J-L.; Ajami, D.; Rebek, J., Jr J. Am.
Chem. Soc. 2008, 130, 7810. (b) Restorp, P.; Rebek, J., Jr J. Am. Soc.
Chem. 2008, 130, 11850.
(7) Greater progress in characterization has been achieved with related mixed
anhydrides which are not in the formimidate series. cf. inter alia: (a)
Kawasaki, K.; Tsumura, S.; Katsuki, T. Synlett. 1995, 12, 1245. (b) Schwarz,
J. S. P. J. Org. Chem. 1972, 37, 2906. (c) Cambie, R. C.; Hayward, R. C.;
Roberts, J. L.; Rutledge, P. S. J. Chem. Soc., Perkin Transc. 1 1974, 15,
1858.
(8) The authors reported absorptions at 1687 and 1598 cm-1 for the alleged
mixed anhydride 7.
(9) Typical IR absorptions reported for a nonformimidate mixed anhydride of
the type 7 are ca. 1710-1660 cm-1; see ref 7.
(10) The NMR spectrum of the diffraction worthy crystal is the same as that of
the bulk material. For a crystal structure based on a hydrogen-bonded
complex between two “small molecules”, see: Leiserowitz, L.; Nader, F.
Acta Crystallogr. 1977, B33, 2719.
(11) (a) Atta-ur-Rahman; Basha, A.; Waheed, N. Tetrahedron Lett. 1976, 3,
219. (b) Cooley, J. H.; Stone, D. M.; Oguri, H. J. Org. Chem. 1977, 42,
3096. (c) Hendrickson, J. B.; Hussoin, M. S. J. Org. Chem. 1989, 54, 1144.
(d) Rigby, J. H.; Laurent, S. J. Org. Chem. 1998, 63, 6742. (e) Fernholz,
H.; Schmidt, H. J. Angew. Chem., Int. Ed. 1969, 8, 521. (f) Callens, E.;
Burton, A. J.; Barrett, A. G. M. Tetrahedron Lett. 2006, 47, 8699. (g)
Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000, 65, 8210. (h)
Shrestha-Dawadi, P. B.; Jochims, J. C. Synthesis 1993, 4, 426. (i)
Siebenmann, C.; Schnitzer, R. J. J. Am. Chem. Soc. 1943, 65, 2126.
(12) (a) Gassman, P. G.; Haberman, L. M. Tetrahedron Lett. 1985, 26, 4971.
(b) Kotha, S.; Brahmachary, E. Bioorg. Med. Chem. 2002, 10, 2291. (c)
Priestley, E. S.; Decicco, C. P. Org. Lett. 2000, 2, 3095. (d) Kotha, S.;
Screenivasachary, N.; Mohanraja, K.; Durani, S. Bioorg. Med. Chem. Lett.
2001, 11, 1421.
Supporting Information Available: Detailed experimental proce-
dures, copies of all spectral data, full characterization, and a cif file of
X-ray for compound 10. This material is available free of charge via
References
(1) (a) Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 5446. (b) Jones,
G. O.; Li, X.; Hayden, A. D.; Houk, K. N.; Danishefsky, S. J. Org. Lett.
(2) (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 181. (b) Ugi, I.; Meyr, R.;
Fetzer, U.; Steinbru¨ckner, C. Angew. Chem. 1959, 71, 386. For reviews,
see: (c) Banfi, L.; Riva, R. Org. React. 2005, 65, 1. (d) Do¨mling, A.; Ugi,
I. Angew. Chem., Int. Ed. 2000, 39, 3168. (e) Do¨mling, A. Chem. ReV.
2006, 106, 17.
(3) The reaction described here is a special instance of a Mumm rearrangement
which involves a 1,3-OfN acyl transfer not in the formimidate series.
However, the formimidate context reported here renders this reaction unique.
For literature access to the Mumm reaction, see: (a) Mumm, O.; Hesse,
H.; Volquartz, H. Ber. 1915, 48, 379. (b) Curtin, D. Y.; Miller, L. L. J. Am.
Chem. Soc. 1967, 89, 637. (c) Sheehan, J. C.; Corey, E. J. J. Am. Chem.
Soc. 1952, 74, 4555. (d) Schwarz, J. S. P. J. Org. Chem. 1972, 37, 2906.
(e) Darbeau, R. W.; White, E. H.; Nunez, N.; Coit, B.; Daigle, M. J. Org.
Chem. 2000, 65, 1115.
(4) In our first paper in this series (ref 1), we described a direct pathway to 4, Via
a formal cycloaddition pathway, which does not pass through 3. In this paper,
we focus on the presumed pathway from 3 to 4. However, involvement of the
direct cycloaddition pathway to reach 4 is not ruled out.
(5) (a) Shaabani, A.; Soleimani, E.; Rezayan, A. H. Tetrahedron Lett. 2007,
48, 6137. (b) Gloede, J.; Gross, H. Z. Chem. 1968, 8, 219. (c) Gloede, J.
J. Prakt. Chem. 1982, 324, 667. (d) Shono, T.; Kimura, M.; Ito, Y.;
Nishida, K.; Oda, R. Bull. Chem. Soc. Jpn. 1964, 37, 635. The structure
was presumed on the basis of its infrared spectrum. (e) Isaka, M.;
Boonkhao, B.; Rachtawee, P.; Auncharoen, P. J. Nat. Prod. 2007, 70,
(13) Microwave heating of Gloede’s product (purported 15) in chloroform again
failed to produce the desired N-formylamide.
(14) It should be noted that the elemental analysis, “%N ) 10.45,” (ref 3b) of
Gloede’s product 15 (calcd % N ) 10.14) fits better for compound 17
(calcd. %N ) 10.33) than that concluded by Gloede. As reported by the
authors, the claimed 15 does not react with methanol under reflux
conditions.
(15) Authentic 1,3-dicyclohexylamidine (18) was prepared according to a known
procedure: Taylor, E. C.; Ehrhart, W. A. J. Org. Chem. 1963, 28, 1108.
(16) Simon, J. R. Synthesis 2001, 13, 2011.
(17) (a) Price, C. C.; Roberts, R. M. J. Am. Chem. Soc. 1946, 68, 1255. (b)
Olgu´ın, L. F.; Jime´nez-Estrada, M.; Ba´rzana, E.; Navarro-Ocan˜a, A. Synlett
2005, 2, 340.
(18) This concept was suggested to account for the small amount of amide
formation at room temperature; see ref 1. For cyclization examples that do
not follow Baldwin’s rule, see: Astudillo, M. E. A.; Chokotho, N. C. J.;
Jarvis, T. C.; Johnson, C. D.; Lewis, C. C.; McDonnel, P. D. Tetrahedron
1985, 41, 5919.
(19) Both isonitriles 25 and 27 were prepared in racemic form.
(20) Okamoto, R.; Kajihara, Y. Angew. Chem., Int. Ed. 2008, 47, 5402.
JA8047078
9
13224 J. AM. CHEM. SOC. VOL. 130, NO. 40, 2008