ChemComm
Communication
propargylamines with an alkyl/aryl substituent at the C1-
position, products were isolated in moderate to excellent yields.
However, for N,N-cyclic substituted propargylamines, reactions
were slower and isolated yields were also affected. The 1,3-
migration of amine was predicted via a 4-exo-dig cyclization
followed by an E1cB elimination type ring opening step. With a
pyrene chromophore at the C1-position, the formation of a
more conjugated product was demonstrated by 22 nm red shift
of lmax and change in fluorescence from cyan to green.
We are grateful to the Director, IISER Pune and DST-SERB
(SR/S1/OC-65/2012) for financial support. D.P.C. thanks CSIR
for the fellowship.
Fig. 1 Variable temperature 1H-NMR (400 MHz) of 4t in CDCl3.
Notes and references
1 For various types of click reactions, see: (a) H. C. Kolb, M. G. Finn and
K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004; (b) N. J. Agard,
J. A. Prescher and C. R. Bertozzi, J. Am. Chem. Soc., 2004, 126, 15046;
(c) J. C. Jewett and C. R. Bertozzi, Chem. Soc. Rev., 2010, 39, 1272.
2 For click reactions involving alkynes and azides, see: (a) W. G. Lewis,
L. G. Green, F. Grynszpan, Z. Radic, P. R. Carlier, P. Taylor, M. G. Finn
and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 1053;
(b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596; (c) J. Lahann, Click Chemistry
for Biotechnology and Materials Science, John Wiely & Sons, Chichester,
West Sussex, 2009.
3 C. Le Droumaguet, C. Wang and Q. Wang, Chem. Soc. Rev., 2010,
39, 1233.
4 (a) R. Breinbauer and M. Koehn, ChemBioChem, 2003, 4, 1147;
(b) A. H. El-Sagheer and T. Brown, Chem. Soc. Rev., 2010, 39, 1388.
5 P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit,
J. Pyun, J. M. J. Frechet, K. B. Sharpless and V. V. Fokin, Angew.
Chem., Int. Ed., 2004, 43, 3928.
6 (a) H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8, 1128;
(b) J. M. Holub and K. Kirshenbaum, Chem. Soc. Rev., 2010, 39, 1325.
7 (a) E. J. Yoo, M. Ahlquist, S. H. Kim, I. Bae, V. V. Fokin,
K. B. Sharpless and S. Chang, Angew. Chem., Int. Ed., 2007,
46, 1730; (b) I. Bae, H. Han and S. Chang, J. Am. Chem. Soc., 2005,
127, 2038; (c) E. J. Yoo, M. Ahlquist, I. Bae, K. B. Sharpless,
V. V. Fokin and S. Chang, J. Org. Chem., 2008, 73, 5520.
8 S. H. Kim, D. Y. Jung and S. Chang, J. Org. Chem., 2007, 72, 9769.
9 E. J. Yoo and S. Chang, Curr. Org. Chem., 2009, 13, 1766.
10 S. H. Cho, E. J. Yoo, I. Bae and S. Chang, J. Am. Chem. Soc., 2005,
127, 16046.
11 E. J. Yoo, I. Bae, S. H. Cho, H. Han and S. Chang, Org. Lett., 2006,
8, 1347.
12 S. H. Cho and S. Chang, Angew. Chem., Int. Ed., 2008, 47, 2836.
13 J. Wang, J.-J. Wang, Y.-X. Zhu, P. Lu and Y.-G. Wang, Chem.
Commun., 2011, 47, 3275.
14 J. Kim, S. Y. Lee, J. Lee, Y. Do and S. Chang, J. Org. Chem., 2008,
73, 9454.
15 E. J. Yoo, S. H. Park, S. H. Lee and S. Chang, Org. Lett., 2009, 11, 1155.
16 W. Song, W. Lu, J. Wang, P. Lu and Y. Wang, J. Org. Chem., 2010,
75, 3481.
17 (a) K. K. R. Tetala, R. J. Whitby, M. E. Light and M. B. Hurtshouse,
Tetrahedron Lett., 2004, 45, 6991; (b) N. Shindoh, K. Kitaura, Y. Takemoto
and K. Takasu, J. Am. Chem. Soc., 2011, 133, 8470; (c) X. Yan, J. Liao,
Y. Lu, J. Liu, Y. Zeng and Q. Cai, Org. Lett., 2013, 15, 2478.
18 N. Shindoh, Y. Takemoto and K. Takasu, Chem.–Eur. J., 2009, 15, 7026.
19 G. V. Boyd, in The Chemistry of Amidines and Imidates, ed. S. Patai
and Z. Rappoport, Wiley, New York, 1991, ch. 8, vol. 2.
20 B. Ojo, P. G. Dunbar, G. J. Durant, P. I. Nagy, J. J. Huzl III,
S. Periasamy, D. O. Ngur, A. A. El-Assadi, W. P. Hoss and
W. S. Messer Jr., Bioorg. Med. Chem., 1996, 4, 1605.
Scheme 2 Plausible mechanism for the formation of acrylamidine.
electrophilic C4-center. The formation of III is also favored due to
delocalization of the negative charge on the N5-center by a sulfonyl
group. A subsequent E1cB elimination type ring opening process
results in the formation of IV. Generation of III from II is considered
as the rate determining step due to formation of a strained
4-membered ring from an acyclic system. This prediction was
supported by longer reaction times of cyclic amino group containing
propargylamines 3k–3r and poorer yields of the corresponding
products 4k–4r. In these cases, formation of spiro-transition
states contributes to the slower reaction rates. The preferential
E-stereochemistry around the CQC bond as predicted by the
mechanism was confirmed by NMR and single crystal X-ray
diffraction studies of 4d (Fig. S2, ESI†) and 4w (Fig. S4, ESI†).
Pyrene-based propargylamine 3c0 (10 mM) displayed a lmax
=
353 nm. When an aliquot from the completed reaction mixture
of 3c0 and TsN3 (Table 2, entry 29) was diluted suitably (to
obtain B10 mM concentration of 4c0) in HEPES buffer (10 mM,
pH = 7.4), the resulting solution exhibited a lmax = 375 nm (i.e.
22 nm red shift) due to the formation of more conjugated 4c0
(Fig. 2A). Formation of more conjugated 4c0 was also marked by
the change in fluorescence from cyan to green (Fig. 2B).
In conclusion, we have demonstrated a new reaction of
ketenimine bearing a tethered amino group facilitating its
1,3-migration. The methodology portrays rapid reactions of
N,N-disubstituted propargylamines with tosylazide under CuCl
catalytic, open air conditions to synthesize acrylamidines. For
21 C. Thominiaux, B. de Bruin, Y. Bramoulle, F. Hinnen, S. Demphel,
H. Valette, M. Bottlaender, L. Besret, M. Kassiou and F. Dolle, Appl.
Radiat. Isot., 2006, 64, 348.
22 T. R. M. Rauws and B. U. W. Maes, Chem. Soc. Rev., 2012, 41, 2463.
23 C. Wentrup, V. V. R. Rao, W. Frank, B. E. Fulloon, D. W. J. Moloney
and T. Mosandl, J. Org. Chem., 1999, 64, 3608.
Fig. 2 UV-visible spectra of 3c0 (10 mM) in the absence and in the presence
of 10 mM TsN3 (A); images of cuvettes containing either 3c0 (50 mM) or [3c0 +
TsN3] taken under the hand-held UV (lex = 365 nm) lamp (B).
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 323--325 | 325