M. Takahashi et al. / Tetrahedron 65 (2009) 2669–2677
2677
(Mþ); HRMS (ESI) m/z calcd for C70H95N2O4: 1027.7292, found
1027.7387; 1H NMR (CDCl3)
0.85–0.95 (m, 24H, Me), 1.25–1.55 (m,
Chem. Soc. 2006, 128, 7174; (p) Ajayaghosh, A.; George, S. J.; Praveen, V. K.
Angew. Chem., Int. Ed. 2003, 42, 332.
d
4. (a) Mondal, S. K.; Ghosh, S.; Sahu, K.; Mandal, U.; Bhattacharyya, K. J. Chem.
Phys. 2006, 125, 224710; (b) Cringus, D.; Bakulin, A.; Lindner, J.; Vo¨hringer, P.;
Pshenichnikov, M. S.; Wiersma, D. A. J. Phys. Chem. B 2007, 111, 14193; (c) Ryu,
J.-H.; Lee, M. J. Am. Chem. Soc. 2005, 127, 14170; (d) Chen, C.-Y.; Tian, Y.; Cheng,
Y.-J.; Young, A. C.; Ka, J.-W.; Jen, A. K.-Y. J. Am. Chem. Soc. 2007, 129, 7220.
5. Takahashi, M.; Ichihashi, Y.; Nishizawa, N.; Ohno, S.; Fujita, N.; Yamashita, M.;
Sengoku, T.; Yoda, H. J. Photochem. Photobiol. A: Chem., in press. doi:10.1016/
j.jphotochem.2008.12.022
32H, CH2), 1.63–1.74 (m, 4H, CH), 3.71 (s, 4H, CH2), 3.81 (d, J¼5.6 Hz,
8H, CH2), 3.93 (s, 8H, CH2), 6.41 (t, J¼2.2 Hz, 2H, ArH), 6.57 (d,
J¼2.2 Hz, 4H, ArH), 7.14 (d, J¼7.7 Hz, 4H, ArH), 8.02 (d, J¼7.7 Hz, 4H,
ArH); 13C NMR (CDCl3)
d 11.2 (CH3),14.1 (CH3), 23.1 (CH2), 24.0 (CH2),
29.2 (CH2), 30.6 (CH2), 39.6 (CH), 56.8 (CH2), 62.4 (CH2), 70.7 (CH2),
100.5 (CH), 107.6 (CH), 119.5 (CH), 123.4 (CH), 128.5 (C), 129.6 (C),
130.3 (C),133.0 (C),140.5 (C),160.9 (C). Anal. Calcd for C70H94N2O4: C,
81.82; H, 9.22; N, 2.73. Found: C, 81.93; H, 8.93; N, 2.60.
6. Melhuish, W. H. J. Phys. Chem. 1963, 67, 1681.
7. (a) Wu¨ rthner, F.; Sautter, A.; Thalacker, C. Angew. Chem., Int. Ed. 2001, 39, 1243;
(b) Takahashi, M.; Suzuki, Y.; Ichihashi, Y.; Yamashita, M.; Kawai, H. Tetrahedron
Lett. 2007, 48, 357.
8. In our previous study employing 1, we demonstrated that the reverse micelles
should have a uniform aggregate size independent of the W0 value. For this
reason, we used the W0 value of 50 as a representative self-assembly condition.
9. We previously demonstrated that nanoscopic-sized reverse micelles preparaed
from the related analogue 1 achieved either efficient intramolecular energy
transfer or collisional dissipation due to intermolecular chromophore
interactions.
10. Possibilities of energy transfer between the self-assembled aggregates can be
ruled out on the basis of the experimental conditions employing sufficiently
dilute solutions of the analytes.
4.3. Typical experimental procedure for AFM analyses
The reaction mixture diluted with dry toluene (c 0.1 mM) was
drop-cast on to the HOPG. Airdried sample of the reaction mixture
was examined by carrying out measurements in tapping mode.
Acknowledgements
11. (a) Takahashi, M.; Morimoto, H.; Miyake, K.; Kawai, H.; Sei, Y.; Yamaguchi, K.;
Yamashita, M.; Sengokua, T.; Yoda, H. New J. Chem. 2008, 32, 547; (b) Takahashi,
M.; Morimoto, H.; Miyake, K.; Yamashita, M.; Kawai, H.; Sei, Y.; Yamaguchi, K.
Chem. Commun. 2006, 3084; (c) Takahashi, M.; Morimoto, H.; Suzuki, Y.;
Yamashita, M.; Kawai, H. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.). 2004,
45, 959.
This research was supported by a Grant-in-Aid for Scientific
Research and Nanotechnology Network Project (Kyushu-area
Nanotechnology Network) from the Ministry of Education, Culture,
Sports, Science, and Technology (MEXT), Japan.
12. In order to gain further insight into the mechanism of the energy transfer
processes, fluorescence lifetime studies on the reverse micelles are needed.
However, our attempts to obtain the fluorescence lifetime data (
limited time resolution of the experimental setup.
s) failed due to
Supplementary data
13. Application of the Stern–Volmer plots yielded the Stern–Volmer constant KSV
1H and 13C NMR spectra for all new compounds. Supplementary
data associated with this article can be found in the online version,
(1.2ꢀ104
M
ꢂ1) for the series of the mixed reverse micelles. Thus, the rate
constant of energy transfer kET (3.1ꢀ1011
M
ꢂ1 sꢂ1) was estimated using the
s (1.4 ns (14%), 4.3 ns (23%) and 60.5 ns (63%))
reported fluorescence lifetimes
of the anthracene aggregate system in micelles, which was closely related to
the donor-based reverse micelles prepared from 2. As for this anthracene
aggregate system, see: Chen, K.-H.; Yang, J.-S.; Hwang, C.-Y.; Fang, J.-M. Org. Lett.
2008, 10, 4401.
References and notes
1. (a) Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45, 4562; (b)
Balaban, T. S. Acc. Chem. Res. 2005, 38, 612; (c) Del Guerzo, A.; Olive, A. G. L.;
Reichwagen, J.; Hopf, H.; Desvergne, J. P. J. Am. Chem. Soc. 2005, 127, 17984; (d)
Ro¨ger, C.; Mu¨ller, M. G.; Lysetska, M.; Miloslavina, Y.; Holzwarth, A. R.; Wu¨rthner,
F. J. Am. Chem. Soc. 2006, 128, 6542; (e) Sautter, A.; Kaletas¸, B. K.; Schmid, D. G.;
Dobrawa, R.; Zimine, M.; Jung, G.; van Stokkum, I. H. M.; De Cola, L.; Williams, R.
M.; Wu¨rthner, F. J. Am. Chem. Soc. 2005, 127, 6719; (f) Hoeben, F. J. M.; Shklyar-
evskiy, I. O.; Pouderoijen, M. J.; Engelkamp, H.; Schenning, A. P. H. J.; Christianen,
P. C. M.; Maan, J. C.; Meijer, E. W. Angew. Chem., Int. Ed. 2006, 45, 1232; (g) Metera,
K. L.; Sleiman, H. Macromolecules 2007, 40, 3733; (h) Sugiyasu, K.; Fujita, N.;
Shinkai, S. Angew. Chem., Int. Ed. 2004, 43,1229; (i) Ajayaghosh, A.; Praveen, V. K.;
Vijayakumar, C.; George, S. J. Angew. Chem., Int. Ed. 2007, 46, 6260; (j) Kelly, R. F.;
Goldsmith, R. H.; Wasielewski, M. R. J. Am. Chem. Soc. 2007,129, 6384; (k) Hajjaj, F.;
Yoon, Z. S.; Yoon, M.-C.; Park, J.; Satake, A.; Kim, D.; Kobuke, Y. J. Am. Chem. Soc.
2006,128, 4612; (l) Sagawa, T.; Fukugawa, S.; Yamada, T.; Ihara, H. Langmuir 2002,
18, 7223; (m) Sasaki, K.; Nakagawa, H.; Zhang, X.; Sakurai, S.; Kano, K.; Kuroda, Y.
Chem. Commun. 2004, 408; (n) Ajayaghosh, A.; Praveen, V. K.; Srinivasan, S.;
Varghese, R. Adv. Mater. 2007, 19, 411.
2. (a) Vasil’ev, S.; Orth, P.; Zouni, A.; Owens, T. G.; Bruce, D. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 8602; (b) Sundstro¨m, V.; Pullerits, T.; van Grondelle, R. J. Phys. Chem. B
1999, 103, 2327; (c) McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-
Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517.
3. (a) Giansante, C.; Ceroni, P.; Balzani, V.; Vo¨gtle, F. Angew. Chem., Int. Ed. 2008, 47,
5422; (b) Adronov, A.; Fre´chet, J. M. J. Chem. Commun. 2000, 1701; (c) Choi,
M.-S.; Yamazaki, T.; Yamazaki, I.; Aida, T. Angew. Chem., Int. Ed. 2004, 43, 150; (d)
Accorsi, G.; Armaroli, N.; Eckert, J.-F.; Nierengarten, J.-F. Tetrahedron Lett. 2002,
43, 65; (e) Takahashi, M.; Morimoto, H.; Suzuki, Y.; Yamashita, M.; Kawai, H.;
Sei, Y.; Yamaguchi, K. Tetrahedron 2006, 62, 3065; (f) Takahashi, M.; Morimoto,
H.; Suzuki, Y.; Odagi, T.; Yamashita, M.; Kawai, H. Tetrahedron 2004, 60, 11771;
(g) Takahashi, M.; Odagi, T.; Tomita, H.; Oshikawa, T.; Yamashita, M. Tetrahedron
Lett. 2003, 44, 2455; (h) Chrisstoffels, L. A. J.; Adronov, A.; Fre´chet, J. M. J. Angew.
Chem., Int. Ed. 2000, 39, 2163; (i) Beckers, E. H. A.; van Hal, P. A.; Schenning, A.
P. H. J.; El-ghayoury, A.; Peeters, E.; Rispens, M. T.; Hummelen, J. C.; Meijer, E.
W.; Janssen, R. A. J. J. Mater. Chem. 2002, 12, 2054; (j) Nakashima, T.; Kimizuka,
N. Adv. Mater. 2002, 14, 1113; (k) Cabanillas-Gonzalez, J.; Fox, A. M.; Hill, J.;
Bradley, D. D. C. Chem. Mater. 2004, 16, 4705; (l) Wolak, M. A.; Melinger, J. S.;
Lane, P. A.; Palilis, L. C.; Landis, C. A.; Delcamp, J.; Anthony, J. E.; Kafafi, Z. H. J.
Phys. Chem. B 2006, 110, 7928; (m) Ajayaghosh, A.; Praveen, V. K.; Vijayakumar,
C. Chem. Soc. Rev. 2008, 37, 109; (n) Praveen, V. K.; George, S. J.; Varghese, R.;
Vijayakumar, C.; Ajayaghosh, A. J. Am. Chem. Soc. 2006, 128, 7542; (o)
Ajayaghosh, A.; Vijayakumar, C.; Praveen, V. K.; Babu, S. S.; Varghese, R. J. Am.
14. For further details and some theoretical bases for the Fo
¨rster process, see: the
relative ratio of the peaks corresponding to the anthracene donor, while nor-
malizing for the peaks corresponding to the perylene acceptor, can be used to
estimate the energy transfer efficiency. According to this methodology, the
energy transfer efficiencies were estimated to be 0.71, 0.77, and almost quan-
titative for the reverse micelles at the feed ratios (2/3) of 95/5, 91/9, and the
other members of the series (i.e., 2/3¼83/17, 75/25, 67/33, 50/50, 33/67, 25/75,
17/83, 9/91, and 5/95), respectively Valeur, B. Molecular Fluorescence Principles
and Applications; Wiley-VCH: Weinheim, New York, Chichester, Brisbane, Sin-
gapore, Toronto, 2002; Chapter 9, pp 247–272.
15. In our previous study employing 1, we reproducibly obtained small-sized
spherical objects when the solutions at different concentrations in toluene
were cast on the HOPG substrates. Based on those reproducible observations,
we concluded that the small-sized peaks could be attributed to the individual
reverse micelles and thus the medium-sized peaks should correspond to their
assemblies.
16. For aggregate size determination, dynamic light scattering (DLS) measure-
ments have been performed on the reverse micelles. However, attempts to
record particle size distributions failed due to experimental limitations of the
setup.
17. At highly dilute concentrations of the surfactants below the cmc, where the
surfactants gathering in the reverse micellar forms should become dissociated,
the fluorescence spectra of the samples were identical to that of the monomeric
perylene emission, whose intensity should increase linearly with the solute
concentrations. On the other hand, the formation of the reverse micelles leads
to introduction of the radiationless deactivation channels due to the chromo-
phore clustering, resulting in nonlinear dependency of the fluorescence
intensities on the solute concentrations. For these reasons, we considered that
titration experiments performed by monitoring the intensity of the fluores-
cence emission from the chromophoric components allowed precise evaluation
of the cmc values. As for similar procedures for cmc estimations, see: (a)
´
Goodwin, A. P.; Mynar, J. L.; Ma, Y.; Fleming, G. R.; Frechet, J. M. J. J. Am. Chem.
Soc. 2005, 127, 9952; (b) Jung, C.; Mu¨ller, B. K.; Lamb, D. C.; Nolde, F.; Mu¨llen, K.;
Bra¨uchle, C. J. Am. Chem. Soc. 2006, 128, 5283; (c) Kang, L.; Wang, Z.; Cao, Z.; Ma,
Y.; Fu, H.; Yao, J. J. Am. Chem. Soc. 2007, 129, 7305; (d) Sutthasupa, S.; Sanda, F.;
Masuda, T. Macromolecules 2008, 41, 305.
18. (a) Xu, S.; Giuseppone, N. J. Am. Chem. Soc. 2008, 130, 1826; (b) Ma, Y.;
Kolotuchin, S. V.; Zimmerman, S. C. J. Am. Chem. Soc. 2002, 124, 13757.
19. (a) Wang, B.-B.; Gao, M.; Jia, X.-R.; Li, W.-S.; Jiang, L.; Wei, Y. J. Colloid Interface
Sci. 2008, 324, 225; (b) Beckers, E. H. A.; Jonkheijm, P.; Schenning, A. P. H. J.;
Meskers, S. C. J.; Janssen, R. A. J. ChemPhysChem 2005, 6, 2029.