Journal of the American Chemical Society
Page 4 of 6
(2) (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417;
1
2
3
4
5
6
7
8
(b) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem. Int. Ed.
2012, 51, 7384; (c) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc.
Chem. Res. 2012, 45, 911; (d) Jeffrey, J. L.; Sarpong, R. Chem.
Sci. 2013, 4, 4092; (e) Shin, K.; Kim, H.; Chang, S. Acc. Chem.
Res. 2015, 48, 1040; (f) Jiao, J.; Murakami, K.; Itami, K. ACS
Catal. 2016, 6, 610; (g) Park, Y.; Kim, Y.; Chang, S. Chem. Rev.
2017, 117, 9247; (h) Díaz-Requejo, M. M.; Pérez, P. J. Chem.
Rev. 2008, 108, 3379.
(3) (a) Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591; (b)
Jat, J. L.; Paudyal, M. P.; Gao, H.; Xu, Q.-L.; Yousufuddin, M.;
Devarajan, D.; Ess, D. H.; Kürti, L.; Falck, J. R. Science 2014,
343, 61; (c) Jiang, H.; Lang, K.; Lu, H.; Wojtas, L.; Zhang, X. P.
J. Am. Chem. Soc. 2017, 139, 9164; (d) Munnuri, S.; Adebesin,
A. M.; Paudyal, M. P.; Yousufuddin, M.; Dalipe, A.; Falck, J. R.
J. Am. Chem. Soc. 2017, 139, 18288; (e) Hong, S. Y.; Park, Y.;
Hwang, Y.; Kim, Y. B.; Baik, M.-H.; Chang, S. Science 2018,
359, 1016; (f) Chiappini, N. D.; Mack, J. B. C.; Du Bois, J.
Angew. Chem. Int. Ed. 2018, 130, 5050.
(4) (a) Thornton, A. R.; Blakey, S. B. J. Am. Chem. Soc. 2008,
130, 5020; (b) Thornton, A. R.; Martin, V. I.; Blakey, S. B. J.
Am. Chem. Soc. 2009, 131, 2434; (c) Brawn, R. A.; Zhu, K.;
Panek, J. S. Org. Lett. 2014, 16, 74.
(5) Mace, N.; Thornton, A. R.; Blakey, S. B. Angew. Chem. Int.
Ed. 2013, 52, 5836.
(6) (a) Danielec, H.; Klügge, J.; Schlummer, B.; Bach, T.
Synthesis 2006, 2006, 551; (b) Rodríguez, M. R.; Beltrán, Á.;
Mudarra, Á. L.; Álvarez, E.; Maseras, F.; Díaz-Requejo, M. M.;
Pérez, P. J. Angew. Chem. Int. Ed. 2017, 56, 12842.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Synthetic utility of the obtained products was briefly
demonstrated (Scheme 4). Product 8, easily obtained even in
a gram scale, smoothly underwent a Pd-catalyzed cross-
coupling reaction with phenyl boronic acid to afford 30 with
excellent stereoselectivity. Nucleophilic substitution of vinyl
chloride with morpholine occurred under metal-free condi-
tions to give 31 as an isomeric mixture. Bromoamidated
product 29 also underwent Pd-catalyzed couplings to afford
conjugated Z-dienyl and Z-enynyl products in a stereoreten-
tive manner (32 and 33, respectively).
Scheme 4. Synthetic Applicationsa
(7) Lebel, H.; Leogane, O. Org. Lett. 2005, 7, 4107.
(8) (a) Bizet, V.; Buglioni, L.; Bolm, C. Angew. Chem. Int. Ed.
2014, 53, 5639; (b) Park, Y.; Park, K. T.; Kim, J. G.; Chang, S. J.
Am. Chem. Soc. 2015, 137, 4534; (c) Park, J.; Chang, S. Angew.
Chem. Int. Ed. 2015, 54, 14103; (d) Wang, H.; Tang, G.; Li, X.
Angew. Chem. Int. Ed. 2015, 54, 13049; (e) Park, Y.; Heo, J.;
Baik, M.-H.; Chang, S. J. Am. Chem. Soc. 2016, 138, 14020; (f)
Jeon, B.; Yeon, U.; Son, J.-Y.; Lee, P. H. Org. Lett. 2016, 18,
4610; (g) Hwang, Y.; Park, Y.; Chang, S. Chem. Eur. J. 2017, 23,
11147; (h) Park, J.; Lee, J.; Chang, S. Angew. Chem. Int. Ed.
2018, 57, 5202; (i) Zhou, Y.; Engl, O. D.; Bandar, J. S.; Chant,
E. D.; Buchwald, S. L. Angew. Chem. Int. Ed. 2018, 57, 6672.
(9) Drover, M. W.; Love, J. A.; Schafer, L. L. J. Am. Chem. Soc.
2016, 138, 8396.
aSee SI for detailed reaction conditions (ratio of Z/E-isomers
is given in parentheses).
In conclusion, we have successfully utilized an intuitive
strategy of ligand participation towards the first development
of Ir-catalyzed imido transfer into alkynes. Based on a stoi-
chiometric [3+2] cycloaddition of Cp*Ir(III)(κ2-N,O-chelate)
with alkynyl dioxazolone, a catalytic haloamidation protocol
is now established by employing [Cp*IrCl2]2 precatalyst and
NaX salts (X= Cl or Br) as a practical halide source to afford
synthetically versatile Z-(halovinyl)lactams in high efficiency
and stereoselectivity.
(10) Thai, T.-T.; Therrien, B.; Süss-Fink, G. Inorg. Chem.
Commun. 2009, 12, 806.
(11) Brahmchari, D.; Verma, A. K.; Mehta, S. J. Org. Chem.
2018, 83, 3339.
ASSOCIATED CONTENT
Supporting Information
Corresponding Author
(12) (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew.
Chem. Int. Ed. 2005, 44, 4442; (b) Evano, G.; Blanchard, N.;
Toumi, M. Chem. Rev. 2008, 108, 3054; (c) Jana, R.; Pathak, T.
P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(13) (a) Saputra, M. A.; Ngo, L.; Kartika, R. J. Org. Chem. 2015,
80, 8815; (b) Xu, Y.; McLaughlin, M.; Chen, C.-y.; Reamer, R.
A.; Dormer, P. G.; Davies, I. W. J. Org. Chem. 2009, 74, 5100;
(c) Le, C. M.; Sperger, T.; Fu, R.; Hou, X.; Lim, Y. H.;
Schoenebeck, F.; Lautens, M. J. Am. Chem. Soc. 2016, 138,
14441; (d) Derosa, J.; Cantu, A. L.; Boulous, M. N.; O’Duill, M.
L.; Turnbull, J. L.; Liu, Z.; De La Torre, D. M.; Engle, K. M. J.
Am. Chem. Soc. 2017, 139, 5183; (e) Trost, B. M.; Pinkerton, A.
B. J. Am. Chem. Soc. 2002, 124, 7376.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This research was supported by the Institute of Basic Science
(IBS). Single crystal x-ray diffraction experiment with syn-
chrotron radiation were performed at the BL2D-SMC in Po-
hang Accelerator Laboratory.
(14) When a pre-isolated product Z-2 was subjected to the
present catalyst system, an isomerization was observed to
REFERENCES
(1) Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105,
6728.
ACS Paragon Plus Environment