Giant Cobalticinium Dendrimers
Organometallics, Vol. 28, No. 9, 2009 2717
build polyolefin and polybenzyl dendritic cores.18 Although
many ferrocenyl dendrimers are known,6,7 there are only few
reports on cobalticinium dendrimers,19,20 and the known
cobalticinium dendrimers are relatively small. Recently, we
constructed giant ferrocenyl dendrimers based on the tether-
lengthening strategy in order to provide more space around
the dendrimer periphery so that they can be functionalized
with redox groups at the end of the tethers of giant
dendrimers.7g Indeed, the de Gennes dense-packing limit,21
which applied to Tomalia’ seminal giant PAMAM dendrim-
ers,22 predicted a steric limit to the number of generations
due to periphery bulk.21 Although we have shown that back-
folding of small termini toward the dendrimer’s center thus
Scheme 1. Schematic Representation of the Tether-
Lengthening Strategy for the Introduction of Bulky
Functional Groups at the Periphery of Large Dendrimers
(7) (a) Vale´rio, C.; Fillaut, J.-L.; Ruiz, J.; Guittard, J.; Blais, J.-C.; Astruc,
D. J. Am. Chem. Soc. 1997, 119, 2588–2589. (b) Casado, C. M.; Cuadrado,
I.; Alonso, B.; Mora´n, M.; Losada, J. J. Electroanal. Chem. 1999, 463,
87–92. (c) Astruc, D.; Daniel, M.-C.; Ruiz, J. Chem. Commun. 2004, 2637–
2649. (d) Rigaut, S.; Delville, M.-H.; Astruc, D. J. Am. Chem. Soc. 1997,
119, 11132–11133. (e) Daniel, M.-C.; Astruc, D. Chem. ReV. 2004, 104,
293–346. (f) Ornelas, C.; Ruiz, J.; Cloutet, E.; Alves, S.; Astruc, D. Angew.
Chem., Int. Ed. 2007, 46, 872–877. (g) Ornelas, C.; Ruiz, J.; Belin, C.;
Astruc, D. J. Am. Chem. Soc. 2009, 131, 590–601. (h) Villoslada, R.; Alonso,
B.; Casado, C. M.; Garcia-Armada, P.; Losada, J. Organometallics 2009,
28, 727–733.
(8) (a) Wilkinson, G. J. Am. Chem. Soc. 1952, 74, 6148–6149. (b)
Pauson, P. L.; Wilkinson, G. J. Am. Chem. Soc. 1954, 76, 2024–2026. (c)
Astruc, D. Organometallic Chemistry and Catalysis; Springer: Heidelberg,
2007,Chapter 11.
(9) (a) Sheats, J. E.; Rausch, M. D. J. Org. Chem. 1970, 35, 3245–
3249. (b) Braga, D.; Cojazzi, G.; Maini, L.; Polito, M.; Grepioni, F. Chem.
Commun. 1999, 1949–1950. (c) Baik, M.-H.; Fiesner, R. A. J. Phys. Chem.
A 2002, 106, 7402–7412.
partially circumvent the dense packing limit,23,24 back-folding
is all the less possible as the termini are larger.25 For instance,
with a former dendrimer series for which the tethers were
terminated by amidoferrocenyl groups, insolubility was
reached for a dendrimer containing 36 redox termini.7a Thus,
using the tether-lengthening construction, it was possible to
synthesize dendrimers with up to the seventh generation with
approximately 14 000 ferrocenyl units.9 We now report the
use of a related strategy (Scheme 1) to synthesize giant
dendrimers terminated by cobalticinium groups. The synthe-
ses, characterizations, and electrochemical properties of the
resulting giant pentamethylcobalticinium dendrimers are
detailed in this article.
(10) (a) Page, J. A.; Wilkinson, G. J. Am. Chem. Soc. 1952, 74, 6149–
6150. (b) Astruc, D. Chem. ReV. 1988, 88, 1189–1216. (c) Connelly, N. G.;
Geiger, W. E. Chem. ReV. 1996, 96, 877–910. (d) Geiger, W. E.
Organometallics 2007, 26, 5738–5765 (a historical review).
(11) (a) Geiger, W. E. J. Am. Chem. Soc. 1974, 96, 2632–2634. (b)
Geiger, W. E.; Bowden, W. L.; El Murr, N. Inorg. Chem. 1979, 18, 2358–
2361.
Results and Discussion
The strategy of lengthening the dendrimer tethers was applied
by introducing, in the cobalt-sandwich moiety, a presynthesized
functional cyclopentadienyl ligand bearing a long chain termi-
nated by an olefinic group. We choose the pentamethylcyclo-
pentadienyl ancillary ligand because of its ability to stabilize
the precursor cobalt(III) species, and the robustness and solubil-
ity properties that it brings to the cobalt system including its
dendritic series. Note the difference of approach compared to
the giant dendritic ferrocene series whereby the metallocene was
functionalized, due to its rich electrophilic chemistry, before
binding to the dendrimers.
(12) Kondo, M.; Hayakawa, Y.; Oyama, A.; Uchida, F.; Naito, T.;
Maeda, K.; Miyazawa, M.; Unoura, K.; Kawaguchi, H. Inorg. Chem. 2004,
580, 1–5803.
(13) Braga, D.; Angeloni, A.; Grepioni, F.; Tagliavini, E. Organome-
tallics 1997, 16, 5478–5485.
(14) (a) Pittman, C. U.; Ayers, O. E.; McManus, S. P.; Sheats, J. E.;
Whitten, C. E. Macromolecules 1971, 4, 360–362. (b) Masakazu, K.;
Ikuyoshi, T. Nippon Kagakkai Koen Yokoshu 2003, 83, 805.
(15) Spears, K. G.; Shang, H. J. Phys. Chem. A 2000, 104, 2668–2680.
(16) Beer, D. P.; Hesek, D.; Hodacova, J.; Stopkes, S. E. J. Chem. Soc.,
Chem. Commun. 1992, 270–272.
(17) Wang, B.; Zhuang, Y.; Luo, X.; Xu, S.; Zhou, X. Macromolecules
2003, 36, 9684–9686.
(18) (a) Gloaguen, B.; Astruc, D. J. Am. Chem. Soc. 1990, 112, 4607–
4609. (b) Buchholz, D.; Gloaguen, B.; Fillaut, J.-L.; Cotrait, M.; Astruc,
D. Chem.-Eur. J. 1995, 1, 374–381. (c) Astruc, D.; Blais, J.-C.; Cloutet,
E.; Djakovitch, L.; Rigaut, S.; Ruiz, J.; Sartor, V.; Vale´rio, C. Dendrimers
II; Topics in Current Chemistry; Vo¨gtle, F., Ed.; 2000; Vol. 120, pp 229-
259.
1. Synthesis of the Organic Dendrimers. The dendritic
construction starts by the known nona-allylation of [FeCp(η6-
mesitylene)][PF6]26 giving the nona-allyl organic compound
(19) (a) Alonso, E.; Vale´rio, C.; Ruiz, J.; Astruc, D. New J. Chem. 1997,
21, 1139–1141. (b) Gonzalez, B.; Casado, C.; Alonso, B.; Cuadrado, I.;
Moran, M.; Wang, Y.; Kaiker, A. E. Chem. Commun. 1998, 2569–2570.
(c) Casado, Carmen, M.; Gonza´lez, B.; Cuadrado, I.; Alonso, B.; Mora´n,
M.; Losada, J. Angew Chem., Int. Ed. 2000, 112, 2219–2222. (d) Takada,
K.; Diaz, D. J.; Abrun˜a, H. D.; Cuadrado, I.; Gonzalez, B.; Casado, C. M.;
Alonso, B.; Mora´n, M.; Losada, J. Chem.-Eur. J. 2001, 7, 1109–1117. (e)
Gonza´lez, B.; Cuadrado, I.; Alonso, B.; Casado, C. M.; Mora´n, M.; Kaifer,
A. E. Organometallics 2002, 21, 3544–3551. (f) Yao, H.; Grimes, R. N.;
Corsini, M.; Zanello, P. Organometallics 2003, 22, 4381–4383.
(20) Molecular recognition and sensing with small cobalticinium
dendrimers: (a) Vale´rio, C.; Ruiz, J.; Fillaut, J.-L.; Astruc, D. C. R. Acad.
Sci., Paris 1999, 2, Se´rie II c, 79–83. (b) Alonso, B.; Garc´ıa Armada, P.;
Losada, J.; Cuadrado, I.; Gonza´lez, B.; Casado, C. M. Biosens. Bioelectron.
2004, 19, 1617–1625.
(21) de Gennes, P.-G.; Hervet, H. J. Phys. Lett. 1983, 44, L351–360.
(22) (a) Tomalia, D. A.; Baker, H.; Dewald, J. R.; Hall, M.; Kallos, G.;
Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19, 2466–
2470. (b) Tomalia, D. A.; Naylor, A. M.; Goddart, W. A. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 138–175. (c) Tomalia, D. A.; Durst, H. D. Top.
Curr. Chem. 1993, 165, 193–313.
(23) Ruiz, J.; Lafuente, G.; Marcen, S.; Ornelas, C.; Lazare, S.; Blais,
J.-C.; Cloutet, E.; Astruc, D. J. Am. Chem. Soc. 2003, 125, 7250–7257.
(24) Theoretical basis of the back-folding: (a) Lescanec, R. L.; Muthu-
kumar, M. Macromolecules 1990, 23, 2280–2288. (b) Mansfield, M. L.;
Klushin, L. I. Macromolecules 1993, 26, 4262–4268. (c) Boris, D.;
Rubinstein, M. Macromolecules 1996, 29, 7251–7260.
(25) Naidoo, K. J.; Hughes, S. J.; Moss, J. R. Macromolecules 1999,
32, 331–341.
(26) (a) Moulines, F.; Astruc, D. Angew. Chem., Int. Ed. 1988, 27, 1347–
1349. (b) Moulines, F; Gloaguen, B; Astruc, D. Angew. Chem. Int. Ed.
1992, 28, 458–460. (c) Moulines, F.; Djakovitch, L.; Boese, R.; Gloaguen,
B.; Thiel, W.; Fillaut, J.-L.; Delville, M.-H.; Astruc, D. Angew. Chem., Int.
Ed. 1993, 32, 1075–1077.
(27) (a) Gill, T. P.; Mann, K. R. Inorg. Chem. 1983, 22, 1986–1988.
(b) Catheline, D.; Astruc, D. J. Organomet. Chem. 1983, 248, C9-C12.
(c) Catheline, D.; Astruc, D. J. Organomet. Chem. 1984, 266, C11-C14.
(d) Catheline, D.; Astruc, D. Organometallics 1984, 3, 1094–1100. (e)
McNair, A. M.; Schrenck, J. L.; Mann, K. R. Inorg. Chem. 1984, 23, 633–
636. (f) Schrenk, J. L.; McNair, A. M.; McCormick, F. B.; Mann, K. R.
Inorg. Chem. 1986, 25, 3504–3508. (g) Ruiz, J.; Astruc, D. Inorg. Chim.
Acta 2008, 361, 1–4.