Inorg. Chem. 2009, 48, 5587–5589 5587
DOI: 10.1021/ic9003017
Synthesis of Bis(imino)pyridine Iron Amide and Ammonia Compounds from an
N-H Transfer Agent
Amanda C. Bowman,† Suzanne C. Bart,†,‡ Frank W. Heinemann,‡ Karsten Meyer,*,‡ and Paul J. Chirik*,†
†Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
::
14853 and ‡Department of Chemistry and Pharmacy, Inorganic Chemistry, University of Erlangen-Nurnberg,
Egerlandstrasse 1, 91058 Erlangen, Germany
Received February 17, 2009
Addition of the [NH] transfer reagent Hdbabh (dbabh = 2,3:5,6-
dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) to the bis(imino)pyr-
idine iron bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-
(2,6-iPr2C6H3NdCMe)2C5H3N), furnished the corresponding iron
amide and ammonia compounds, resulting from cleavage of the
strained amine. Isotopic labeling studies support N-H bond
activation by a transient, parent imide, [(iPrPDI)FeNH].
corresponding iron arylimide complexes, (iPrPDI)FedNAr
(1dNAr).5 The metrical parameters from X-ray diffraction,
::
in combination with the zero-field 57Fe Mossbauer (MB)
parameters and magnetic susceptibility data, establish an
iron(III) complex with a redox-active, one-electron-reduced
bis(imino)pyridine chelate. Notably, these compounds un-
dergo complete hydrogenation of the Fe-N bond to yield the
corresponding iron dihydrogen complex and the free aniline.
In fact, catalytic azide hydrogenation to amines was observed
in cases where the imide substituents were sufficiently large to
inhibit aniline coordination.5
Inspired by these observations, we sought to prepare other
examples of bis(imino)pyridine iron imides and explore their
reactivity in hydrogenation and related processes. The parent
iron imide, (iPrPDI)FeNH, is an attractive target given the
paucity of such compounds intheliterature as wellaspossible
relevance to biological and industrial ammonia synthesis.
Because of the dangers associated with the preparation
and handling of HN3, we chose to study the chemistry of
Hdbabh (dbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hep-
ta-2,5-diene)6 as an [NH] group transfer agent (Scheme 1).7
The addition of 1 equiv of Hdbabh to a diethyl ether
solution of 1-(N2)2 yielded two new iron products identified
as the paramagnetic iron amide compound, 1-dbabh, and the
diamagnetic iron ammonia derivative, 1-NH3. Free anthra-
cene, equal to the amount of 1-NH3, was also detected by 1H
NMR spectroscopy. 1-NH3 was previously reported and
independently prepared by the treatment of 1-(N2)2 with
anhydrous ammonia.8
Iron imido and nitrido compounds LnFedNR and
LnFetN, respectively, continue to attract attention because
of their potential intermediacy in nitrogen fixation and cata-
lytic group and atom transfer reactions1.,2 Structurally char-
acterized, terminal iron imides are now known for oxidation
states 2+ to 5+.3,4 One notable recent addition is Power’s
iron(V) bis(imide), Ar*Fe(N1Ad)2 (Ar* = C6H-2,6-(C6H2-
2,4,6-iPr3)2-3,5-iPr2), prepared by addition of 1-adamantyl
azide to Ar*Fe(η6-C6H6).3 Our laboratory reported that
the addition of aryl azides to the bis(imino)pyridine iron
bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-
(2,6-iPr2C6H3NdCMe)2C5H3N, 1-(N2)2), furnished the
*To whom correspondence should be addressed. E-mail: Karsten.
Meyer@chemie.uni-erlangen.de (K.M.), pc92@cornell.edu (P.J.C.).
(1) Mayer, A. C.; Bolm, C. In Iron Catalysts in Organic Chemistry,
Reactions and Applications; Plietker, B., Ed.; Wiley-VCH: Weinheim,
Germany, 2008; pp 87-89.
(2) (a) Berry, J. F.; Bill, E.; Bothe, E.; George, S. D.; Mienert, B.; Neese,
F.; Wieghardt, K. Science 2006, 312, 1937. (b) Rohde, J.; Betley, T. A.;
Jackson, T. A.; Saouma, C. T.; Peters, J. C.; Que, L. Inorg. Chem. 2007, 46,
5720. (c) Vogel, C.; Heinemann, F. W.; Sutter, J.; Anthon, C.; Meyer, K.
Angew. Chem., Int. Ed. 2008, 47, 2681. (d) Scepaniak, J. J.; Fulton, M. D.;
Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. J. Am. Chem. Soc.
2008, 130, 10515. (e) Aliaga-Alcalde, N.; George, S. D.; Mienert, B.; Bill, E.;
Wieghardt, K.; Neese, F. Inorg. Chem. 2005, 44, 2908 and references cited
therein.
(3) (a) Verna, A. K.; Nazif, T. N.; Achim, C.; Lee, S. C. J. Am. Chem. Soc.
2000, 122, 11013. (b) Duncan, J. S.; Zdilla, M. J.; Lee, S. C. Inorg. Chem. 2007,
46, 1071. (c) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322. (d) Brown, S. D.; Peter, J. C. J. Am. Chem. Soc. 2005, 127, 1913. (e)
Thomas, C. M.;Mankad, N. P.;Peters, J. C. J. Am. Chem. Soc. 2006, 128, 4956.
(f) Eckert, N. A.; Vaddadi, S.; Stoian, S.; Lachicotte, R. J.; Cundari, T. R.;
Holland, P. L. Angew. Chem., Int. Ed. 2006, 45, 6868. (g) Ni, C. B.; Fettinger, J.
C.; Long, G. J.; Brynda, M.; Power, P. P. Chem. Commun. 2008, 6045.
(4) Mehn, M. P.; Peters, J. C. J. Inorg. Biochem. 2006, 100, 634.
(5) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc.
2006, 128, 5302.
(6) Carpino, L. A.; Padykula, R. E.; Barr, D. E.; Hall, F. H.; Krause, J. G.;
Dufresne, R. F.; Thoman, C. J. J. Org. Chem. 1988, 53, 2565.
(7) For use of Li[dbabh] in metal nitride synthesis: (a) Mindiola, D. J.;
Cummins, C. C. Angew. Chem., Int. Ed. 1998, 37, 945. (b) Betley, T. A.;
Peters, J. C. J. Am. Chem. Soc. 2004, 126, 6252. (c) Meyer, K.; Mindiola, D.
J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Angew. Chem., Int. Ed. 2000,
39, 3063. (d) MacBeth, C. E.; Thomas, J. C.; Betley, T. A.; Peters, J. C. Inorg.
Chem. 2004, 43, 4645. (e) Lu, C. C.; Peters, J. C. Inorg. Chem. 2006, 45, 8597.
(f) Adhikari, D.; Basuli, F.; Fan, H.; Huffman, J. C.; Pink, M.; Mindiola, D.
J. Inorg. Chem. 2008, 47, 4439.
(8) Bart, S. C.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem.
Soc. 2007, 129, 7212.
r
2009 American Chemical Society
Published on Web 04/10/2009
pubs.acs.org/IC