Beilstein J. Org. Chem. 2020, 16, 778–790.
observation suggests that the multihalogen-substitution en-
hanced the electrophilicity of the ketone for the Friedel–Crafts
hydroxyalkylation reaction of indole.
Preprint
A non-peer-reviewed version of this article has been previously published
Conclusion
References
1. Mei, G.-J.; Shi, F. J. Org. Chem. 2017, 82, 7695–7707.
In conclusion, we have developed an efficient and practical
protocol for the preparation of trifluoromethyl(indolyl)phenyl-
methanols, which are of significant interest serving as pre-elec-
trophiles for C–C functionalization at the 3-position of indoles.
Particularly, the Friedel–Crafts alkylation of 3-indolyl-
methanols with indoles has become a useful method for the
preparation of 3,3'-, and 3,6'-DIMs, which are known to pos-
sess a wide variety of biological activities, including anti-in-
flammatory, and anticancer effects. Additionally, trifluoro-
methyl(indolyl)phenylmethanols itselft have various biological
properties including anti-HIV activity. The developed new syn-
thetic protocol for the preparation of trifluoromethyl(indol-
yl)phenylmethanols is operationally simple and provided prod-
ucts in high yields without requiring silica gel column chroma-
tography. The reaction has a broad substrate scope and proceeds
with high regioselectivity. The recovery and reusability of the
catalytic system and large-scale synthesis of products, which
would further transform into biologically active indole-derived
compounds, are further advantages of this protocol.
2. Li, X.; Tan, W.; Gong, Y.-X.; Shi, F. J. Org. Chem. 2015, 80,
3. Tan, W.; Du, B.-X.; Li, X.; Zhu, X.; Shi, F.; Tu, S.-J. J. Org. Chem.
4. Liu, Y.; Zhang, H.-H.; Zhang, Y.-C.; Jiang, Y.; Shi, F.; Tu, S.-J.
5. He, Y.-Y.; Sun, X.-X.; Li, G.-H.; Mei, G.-J.; Shi, F. J. Org. Chem. 2017,
6. Inamdar, S. M.; Gonnade, R. G.; Patil, N. T. Org. Biomol. Chem. 2017,
7. Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y.
8. Suárez, A.; Martínez, F.; Sanz, R. Org. Biomol. Chem. 2016, 14,
9. Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.-L.; Wang, C.-Y.; Xiao, J.
Adv. Synth. Catal. 2015, 357, 4023–4030.
10.Pillaiyar, T.; Gorska, E.; Schnakenburg, G.; Müller, C. E. J. Org. Chem.
11.Deb, M. L.; Das, C.; Deka, B.; Saikia, P. J.; Baruah, P. K. Synlett 2016,
12.Jadhav, S. D.; Singh, A. J. Org. Chem. 2016, 81, 522–531.
Supporting Information
13.Lancianesi, S.; Palmieri, A.; Petrini, M. Adv. Synth. Catal. 2012, 354,
Materials and methods and detailed synthetic procedures
and spectroscopic data of all compounds. Figure S1:
ORTEP-type plot of the molecular structure of 3a, Figures
S2–S25: NMR spectra, Tables S1–S3: Crystal data and
structure refinement for compound 3a.
14.Sun, F.-L.; Zheng, X.-J.; Gu, Q.; He, Q.-L.; You, S.-L.
15.Sarubin-Fragakis, A.; Thomson, C. The Health Professional's Guide to
Popular Dietary Supplements; American Dietetic Association, 2007;
p 312.
16.Park, N. I.; Kim, J. K.; Park, W. T.; Cho, J. W.; Lim, Y. P.; Park, S. U.
17.Okulicz, M.; Hertig, I.; Chichłowska, J. Czech J. Anim. Sci. 2009, 54,
Supporting Information File 1
Experimental and analytical data.
18.Sarver, P. J.; Bacauanu, V.; Schultz, D. M.; DiRocco, D. A.; Lam, Y.-h.;
Sherer, E. C.; MacMillan, D. W. C. Nat. Chem. 2020.
19.Reddy, V. P. Organofluorine compounds in biology and medicine;
Elsevier: Amsterdam, Netherlands, 2015.
Acknowledgements
G.S. thanks Prof. Dr. A. C. Filippou and Prof. Dr. D. Menche
20.Kirsch, P. Modern fluoroorganic chemistry: Synthesis, reactivity,
applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2013.
for providing the X-ray infrastructure.
Funding
T.P. is grateful to the Alexander von Humboldt (AvH) founda-
21.Uneyama, K., Ed. Organofluorine Chemistry; Blackwell Publishing:
22.O’Hagan, D. J. Fluorine Chem. 2010, 131, 1071–1081.
tion and to Bayer Pharma for a postdoctoral fellowship.
23.Jiang, H.-X.; Zhuang, D.-M.; Huang, Y.; Cao, X.-X.; Yao, J.-H.; Li, J.-Y.;
Wang, J.-Y.; Zhang, C.; Jiang, B. Org. Biomol. Chem. 2014, 12,
ORCID® iDs
24.Bandini, M.; Sinisi, R. Org. Lett. 2009, 11, 2093–2096.
789