112
K.-L. Xu et al. / Journal of Molecular Catalysis B: Enzymatic 71 (2011) 108–112
nitrostyrene only gave 3-methyl-5-nitro-4-phenylpentan-2-one
in yield of 38% after 108 h (Table 3, entry 16), and a small amount
of 6-nitro-5-phenylhexan-3-one was obtained as well.
[4] U.T. Bornscheuer, R.J. Kazlauskas, Angew. Chem. Int. Ed. 43 (2004) 6032–6040.
[5] A. Ghanem, Tetrahedron 63 (2007) 1721–1754.
[6] V. Gotor-Fernandez, E. Busto, V. Gotor, Adv. Synth. Catal. 348 (2006) 797–812.
[7] K. Li, T. He, C. Li, X.W. Feng, N. Wang, X.Q. Yu, Green Chem. 11 (2009) 777–779.
[8] M. Svedendahl, K. Hult, P. Berglund, J. Am. Chem. Soc. 127 (2005) 17988–17989.
[9] H.X. Dai, S.P. Yao, J. Wang, Biotechnol. Lett. 28 (2006) 1503–1507.
[10] P.F. Li, S.G. Wen, F. Yu, Q.X. Liu, W.J. Li, Y.C. Wang, X.M. Liang, J.X. Ye, Org. Lett.
11 (2009) 753–756.
[11] B. Tan, X.F. Zeng, Y.P. Lu, P.J. Chua, G.F. Zhong, Org. Lett. 11 (2009) 1927–1930.
[12] A.D. Lu, P. Gao, Y. Wu, Y.M. Wang, Z.H. Zhou, C.C. Tang, Org. Biomol. Chem. 7
(2009) 3141–3147.
[13] T. Kitazume, T. Ikeya, K. Murata, J. Chem. Soc. Chem. Commun. 17 (1986)
1331–1333.
[14] T. Kitazume, K. Murata, Y. Kokusho, S. Iwasaki, J. Fluorine Chem. 39 (1988)
75–86.
[15] J. Kjellberg, N.G. Johansson, Nucleosides Nucleotides 8 (1989) 225–256.
[16] T. Kitazume, K. Murata, J. Fluorine Chem. 36 (1987) 339–349.
[17] J.M. Xu, S.P. Yao, W.B. Wu, D.S. Lv, X.F. Lin, J. Mol. Catal. B: Enzym. 35 (2005)
122–127.
[18] O. Torre, I. Alfonso, V. Gotor, Chem. Commun. 15 (2004) 1724–1725.
[19] P. Carlqvist, M. Svedendahl, C. Branneby, K. Hult, T. Brinck, P. Berglund, Chem-
BioChem 6 (2005) 331–336.
[20] Y. Cai, S.P. Yao, Q. Wu, X.F. Lin, Biotechnol. Lett. 26 (2004) 525–528.
[21] J. Priego, C. Ortiz-Nava, M. Carrillo-Morales, A. Lopez-Munguia, J. Escalante, E.
Castillo, Tetrahedron 65 (2009) 536–539.
It was also worthy to note that this enzymatic Michael addi-
tion had a moderate to excellent diastereoselectivity (syn/anti
71:29–96:4) in favor of the syn-isomers. In order to verify whether
the diastereoselectivity observed was contributed by the enzyme
Michael additions were also conducted using piperidine as a
catalyst. The similar results of diastereoselectivity were obtained
from the chemocatalytic procedure, which indicated that the
diastereoselectivity observed was the result of thermodynanmic
control (Table 3, entries 1–3, 5, 8–11 and 14). Finally, we examined
the ee value of the products by chiral HPLC, but to our disappoint-
ment, no enantioselectivity could be observed. Similar results
were reported for the enzymatic Michael addition catalyzed by
other enzymes [19,21]. The reason will be further investigated.
4. Conclusion
[22] Y. Cai, X.F. Sun, N. Wang, X.F. Lin, Synthesis 5 (2004) 671–674.
[23] S.P. Yao, D.S. Lv, Q. Wu, Y. Cai, S.H. Xu, X.F. Lin, Chem. Commun. 17 (2004)
2006–2007.
[24] O. Torre, V. Gotor-Fernanderz, I. Alfonso, L.F. Garicia-Alles, V. Gotor, Adv. Synth.
Catal. 347 (2005) 1007–1014.
[25] Y. Cai, Q. Wu, Y.M. Xiao, D.S. Lv, X.F. Lin, J. Biotechnol. 121 (2006) 330–337.
[26] C. Qian, J.M. Xu, Q. Wu, D.S. Lv, X.F. Lin, Tetrahedron Lett. 48 (2007) 6100–6104.
[27] J.L. Wang, J.M. Xu, Q. Wu, D.S. Lv, X.F. Lin, Tetrahedron 65 (2009) 2531–2536.
[28] Q. Wu, J.M. Xu, L. Xia, J.L. Wang, X.F. Lin, Adv. Synth. Catal. 351 (2009)
1833–1841.
[29] S.C. Wang, W.H. Johnson, C.P. Whitman, J. Am. Chem. Soc. 125 (2003)
14282–14283.
[30] M. Svedendahl, B. Jovanovic, L. Fransson, P. Berglund, ChemCatChem 1 (2009)
252–258.
[31] J.M. Xu, F. Zhang, Q. Wu, Q.Y. Zhang, X.F. Lin, J. Mol. Catal. B: Enzym. 49 (2007)
50–54.
[32] J.M. Xu, F. Zhang, B.K. Liu, Q. Wu, X.F. Lin, Chem. Commun. 20 (2007)
2078–2080.
In conclusion, we describe here the readily available AUAP
catalyzed Michael addition of ketones to nitroolefins in DMSO in
the presence of water. The reaction conditions including organic
solvents, solvent volume, water content, temperature, substrate
stoichiometry were optimized. The scope of the reaction was tested
by varying the nitroalkenes and ketones. For most of aromatic and
heteroaromatic nitroalkenes, satisfied yields were obtained. This
acidic proteinase catalyzed Michael reaction provides a novel case
of catalytic promiscuity and might be a useful synthetic method
for application.
Acknowledgement
[33] G.A. Strohmeier, T. Sovic, G. Steinkellner, F.S. Hartner, A. Andryushkova,
T. Purkarthofer, A. Glieder, K. Gruber, H. Griengl, Tetrahedron 65 (2009)
5663–5668.
Financial support from Natural Science Foundation Project of CQ
CSTC (2009BA5051) is gratefully acknowledged.
[34] J.F. Cai, Z. Guan, Y.H. He, J. Mol. Catal. B: Enzym. 68 (2011) 240–244.
[35] G.L. Guan, W.C. Dong, J.Y. Chen, H.X. Pan, A.Q. Kong, B. Hou, Acta Microbiol. Sin.
25 (1985) 255–261.
Appendix A. Supplementary data
[36] A.M. Klibanov, Trends Biochem. Sci. 14 (1989) 141–144.
[37] S. Tawaki, A.M. Klibanov, J. Am. Chem. Soc. 114 (1992) 1882–1884.
[38] K. Griebenow, A.M. Klibanov, J. Am. Chem. Soc. 47 (1996) 11695–11700.
[39] A.M. Klibanov, Nature 409 (2001) 241–246.
Supplementary data associated with this article can be found, in
[40] C. Orrenius, T. Norin, K. Hult, G. Carrea, Tetrahedron: Asymmetry 6 (1995)
3023–3030.
[41] E. Wehtje, J. Kaur, P. Adlercreutz, S. Chand, B. Mattiasson, Enzyme Microb.
Technol. 21 (1997) 502–510.
[42] D. Costes, E. Wehtje, P. Adlercreutz, Enzyme Microb. Technol. 25 (1999)
384–391.
[43] E.P. Hudson, R.K. Eppler, J.M. Beaudoin, J.S. Dordick, J.A. Reimer, D.S. Clark, J.
Am. Chem. Soc. 131 (2009) 4294–4300.
References
[1] A. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 409
(2001) 258–268.
[2] H.J. Lamble, M.J. Danson, D.W. Hough, S.D. Bull, Chem. Commun. 1 (2005)
124–126.
[3] X.W. Feng, C. Li, N. Wang, K. Li, W.W. Zhang, Z. Wang, X.Q. Yu, Green Chem. 11
(2009) 1933–1936.