K. Karaoglu et al. / Journal of Molecular Structure 922 (2009) 39–45
45
358 nm (
310
= 3754 Mꢀ1 cmꢀ1), 321
3790 Mꢀ1 cmꢀ1), 358
cmꢀ1), respectively. The bands appearing at the low energy side
are attributable to n ? * transitions associated with the azome-
thine chromophores. The bands at higher energy arise from
transitions within the phenyl and naphthyl rings [35]. The absorp-
tion bands of the complexes are shifted to longer wavelength region
compared to those of the ligand [36]. A moderate intensive band
observed in the range of 405–413 and 403–490 nm is attributable
to the LMCT transitions of L1 and L2 complexes, respectively. This
shift may be attributed to the donation of the lone pairs of electron
of the nitrogen atoms of the Schiff base to the metal ion (M N).
The electronic spectra of the binuclear Cu(II) complexes are
recorded in DMF solution. The electronic spectrum shows a single
absorption bands at 19531 cmꢀ1 (512 nm) for 5. The positions of
the band are of typical d–d transitions in the octahedral Cu(II) sur-
rounding [37,38]. The absorption spectrum of 10 shows a broad peak
centered at 16779 cmꢀ1 (596 nm) due to z2 ? x2 – y2 transition and
that of Cu(II) exhibits square pyramidal geometry [37,39–42]. The
e
= 30328 Mꢀ1 cmꢀ1), 376 nm (
e
= 25492 Mꢀ1 cmꢀ1) and
References
(e
(e (e =
= 3848 Mꢀ1 cmꢀ1), 334
(e (e
= 4018 Mꢀ1 cmꢀ1), 379 = 2665 Mꢀ1
[1] (a) S. Anbu, M. Kandaswamy, P. Sudhakaran, V. Murugan, B. Varghese, J. Inorg.
[2] G. Henrici-Olive, S. Olive, The Chemistry of the Catalyzed Hydrogenation of
Carbon Monoxide, Springer, Berlin, 1984.
[3] H. Dugas, C. Penney, Bioorganic Chemistry, Springer, New York, 1981.
[4] J.D. Margerum, L.J. Miller, Photochromism, Interscience, Wiley, New York,
1971.
[5] W.J. Sawodny, M. Riederer, Angew. Chem. Int. Ed. Engl. 16 (1977) 859.
[6] N. Matsumoto, J.Z. Zhong, H. Okawa, S. Kida, Inorg. Chim. Acta 160 (1989)
153.
[7] D.C. Crans, A.D. Keramidas, H.H. Lity, O.P. Anderson, M.M. Miller, L.M. Lemoine,
S.P. Williams, M. Vandenberg, A.J. Rossomando, L.J. Sweet, J. Am. Chem. Soc.
119 (1997) 5447.
[8] R.C. Burrows, J.C. Bailar, J. Am. Chem. Soc. 88 (1966) 4150.
[9] M. Yildiz, Z. Kilic, T. Hökelek, J. Mol. Struct. 441 (1998) 1.
[10] D.P. Kessissoglou, C.P. Raptopoulou, E.G. Bakalbassis, A. Terzis, J. Mrozinski,
Inorg. Chem. 31 (1992) 4339.
p
p
? p*
[11] S.C. Bhatia, J.M. Bindlish, A.R. Saini, P.C. Jain, J. Chem. Soc. Dalton Trans. (1981)
1773.
[12] M. Calligaris, G. Nardin, L. Randaccio, Coord. Chem. Rev. 7 (1972) 385.
[13] H.S. Maslen, T.N. Waters, Coord. Chem. Rev. 17 (1975) 137.
[14] J. Stewart, E. Lingafelter, C. Acta Cryst. 12 (1959) 842.
[15] D. Chen, A.E. Martell, Inorg. Chem. 26 (1987) 1026.
[16] J.W. Pyrz, A.L. Roe, L.J. Stern, L. Que Jr., J. Am. Chem. Soc. 107 (1985) 614.
[17] J. Costamagna, J. Vargas, R. Latorre, A. Alvarado, G. Mena, Coord. Chem. Rev.
119 (1992) 67.
[18] N.E. Dixon, C. Gazzola, J.J. Watters, R.L. Blakeley, B. Zerner, J. Am. Chem. Soc. 97
(1975) 4131.
[19] C.T. Walsh, W.H. Orme-Johnson, Biochemistry 26 (1987) 4901.
[20] P.A. Vigato, S. Tamburini, D.E. Fenton, Coord. Chem. Rev. 106 (1990) 25.
[21] T.N. Sorrell, Tetrahedron 45 (1989) 3.
[22] V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, A. Poggi, A. Taglietti,
Coord. Chem. Rev. 219 (2001) 821.
[23] M.K. Taylor, J. Reglinski, D. Wallace, Polyhedron 23 (2004) 3201.
[24] X. Yang, R.A. Jones, Q. Wu, M.M. Oye, W.-K. Lo, W.-K. Wong, A.L. Holmes,
Polyhedron 25 (2006) 271.
[25] G. Venkatachalam, N. Raja, D. Pandiarajan, R. Ramesh, Spectrochim. Acta A 71
(2008) 884.
[26] M. Er, K. Sancak, I. Degirmencioglu, K. Serbest, J. Mol. Struct. 882 (2008)
leff values (1.88 and 1.90 BM) support ferromagnetic type interac-
tions in the Cu(II) complexes and these are consistent with the pro-
posed geometries.
The electronic spectra of the dinuclear Mn(II) complexes exhibit
two absorption bands at 21,645 (462 nm) and 10,235 cmꢀ1(977 nm)
for 3, three absorption bands at 20,000 cmꢀ1 (500 nm) and
18,832 cmꢀ1(531 nm), 17,730 cmꢀ1(564 nm) for 8 suggesting an
octahedral geometry. The band assignments were given in Table 5
and the 6A1g ? 4A1g, 4Eg(4G) (
to be hindered by very intense and broad
m
1) transition for complex 3 is thought
* and n ? * transi-
p
?
p
p
tions. For the complex 3 and 8, the observed magnetic susceptibility
value of 5.27 and 3.79 BM is in accordance with the high spin six
coordinated octahedral arrangement around manganese complex
[38,43]. The low moment of 8 may be ascribed to superexchange
takes place between manganese(II) ions.
_
35.
[27] D.A. Skoog, F.J. Holler, A.T. Nieman, Principles of Instrumental Analysis, 5th ed.,
Harcourt Brace and Company, London, 1998.
Typical octahedral Ni(II) complex is expected to exhibit three
3
3
bands which are assignable to A2g(F) ? 3T1g(P), A2g(F) ? 3T1g(F)
and 3A2g(F) ? 3T2g(F) transitions. The Ni(II) complexes in this study
exhibits only two absorptions bands at 21,231 (471 nm) and
10,183 cmꢀ1 (982 nm) for 4, 21,505 (465 nm) and 10,194 cmꢀ1
[28] R. Ustabasß, U. Çoruh, M. Er, K. Serbest, E.M. Vasquez-Lopez, Acta Cryst. 62
(2006) 5006.
[29] N. Karaböcek, S. Karaböcek, H. Mazlum, I. Degirmencioglu, K. Serbest, Turk. J.
Chem. 28 (2004) 87–94.
[30] (a) B.A. El-Sayed, M.M.A. Aly, A.A.A. Emara, S.M.E. Khalil, Vib. Spectrosc. 30
(2002) 93;
(b) E.M. Nour, A.A. Taha, A.S. Al-Naimi, Inorg. Chim. Acta 141 (1988) 139.
[31] (a) C. Lodeiro, R. Bastida, E. Bertolo, A. Macias, A. Rodriguez, Inorg. Chim. Acta
267 (1998) 55;
(981 nm) for
9
and assignable to 3A2g(F) ? 3T1g(F) and
3A2g(F) ? 3T2g(F) transitions for the two complex, respectively.
3
The A2g(F) ? 3T1g(P) transition was hindered by the intense
(b) E.-Q. Gao, G.-M. Yang, J.-K. Tang, D.-Z. Liano, Z.-H. Jiang, S.-P. Yan,
Polyhedron 18 (1998) 3643;
(c) M.G.B. Drew, J. Nelson, S.M. Nelson, J. Chem. Soc. Dalton Trans. (1981) 1678.
[32] M. Shebl, Spectrochim. Acta A 70 (2008) 850.
n ? p* transitions. From these transitions and magnetic moment
values (2.45 and 2.96 BM) a high spin octahedral geometry is as-
signed for 4 and 9 [44].
UV/visible spectra of the binuclear Zn(II) complexes (6 and 11)
were recorded in DMF solution showed two main peaks at 405,
358–241 and 411, 358–245 nm, respectively. These peaks were as-
signed to Zn–L charge-transfer transition as well as intra ligand
transition, respectively.
[33] H. Temel, U. Cakır, I.H. Ugras, Synth. React. Inorg. Met.-Org. Chem. 34 (4)
(2005) 819.
[34] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[35] T.R. Holman, M.P. Hendrich, L. Que, Inorg. Chem. 31 (1992) 937.
[36] J. Manonmani, M. Kandaswamy, V. Narayanan, R. Thirumurugan, S. Shanmuga
Sundura Raj, G. Shanmugam, M.N. Ponnuswamy, H.K. Fun, Polyhedron 20
(2001) 3039.
[37] S.A. Sallam, A.S. Orabi, B.A. El-Shetary, A. Lentz, Trans. Met. Chem. 27 (2002)
447.
Acknowledgements
[38] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, NewYork, 1971.
[39] C.T. Yang, M. Vetrichelvan, X.D. Yang, B. Moubaraki, K.S. Murray, J.J. Vittal, J.
Chem. Soc. Dalton Trans. (2004) 113.
[40] B. Sreenivasulu, M. Vetrichelvan, F. Zhao, S. Gao, J.J. Vittal, Eur. J. Inorg. Chem.
(2005) 4635.
This work was supported by the Scientific and Technical
Research Council of Turkey (TUBITAK) under project No. 107T383.
[41] K.S. Bharathi, A.K. Rahiman, K. Rajesh, S. Sreedaran, P.G. Aravindan, D.
Velmurugan, V. Narayanan, Polyhedron 25 (2006) 2859.
[42] V. Philip, V. Suni, M.R.P. Kurup, M. Nethaji, Polyhedron 25 (2006) 1931.
[43] A.S. El-Tabl, F.A. El-Saied, A.N. Al-Hakimi, Trans. Met. Chem. 32 (2007) 689.
[44] S. Saydam, E. Yilmaz, Spectrochim. Acta A 63 (2006) 506.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in