A. D. Morley et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1658–1661
1661
Table 4
References and notes
Profiles for Cathepsin K inhibitors.
1. Grabowska, U. B.; Chambers, T. J.; Shiro, M. Curr. Opin. Drug. Discov. Devel. 2005,
8, 619.
2. Salminen-Mankonen, H. J.; Morko, J.; Vuorio, E. Curr. Drug Targets 2007, 8, 315.
3. Sun, S. Expert Opin. Ther. Targets 2008, 12, 239.
R2
N
CN
4. Bailey, A.; Pairaudeau, G.; Patel, A.; Thom, S. WO 000819, 2004.
5. Altmann, E.; Cowan-Jacob, S. W.; Missbach, M. J. Med. Chem. 2004, 47, 5833.
6. Teno, N.; Miyake, T.; Ehara, T.; Irie, O.; Sakaki, J.; Ohmori, O.; Gunji, H.;
Matsuura, N.; Masuya, K.; Hitomi, Y.; Nonomura, K.; Horiuchi, M.; Gohda, K.;
Iwasaki, A.; Umemura, I.; Tada, S.; Kometani, M.; Iwasaki, G.; Cowan-Jacob, S.
W.; Missbach, M.; Lattmann, R.; Betschart, C. Bioorg. Med. Chem. Lett. 2007, 17,
6096.
7. Teno, T.; Irie, O.; Miyake, T.; Gohda, K.; Horiuchi, M.; Tada, S.; Nonomura, K.;
Kometani, M.; Iwasaki, G.; Betschart, C. Bioorg. Med. Chem. Lett. 2008, 18, 2599.
8. Teno, N.; Masuya, K.; Ehara, T.; Kosaka, T.; Miyake, T.; Irie, O.; Hitomi, Y.;
Matsuura, N.; Umemura, I.; Iwasaki, G.; Fukaya, H.; Toriyama, K.; Uchiyama, N.;
Nonomura, K.; Sugiyama, I.; Kometani, M. J. Med. Chem. 2008, 51, 5459.
9. Evans, D. C.; Watt, A. P.; Nicoll-Griffith, D. A.; Baillie, T. A. Chem. Res. Toxicol.
2004, 17, 3.
N
H2N
R1
Parameter
12
19
13
R1
Isobutylamino
Morpholino
18
Isobutylamino
Piperazin-1-yl
6
Neopentylamino
Morpholino
17
R2
CatK IC50 nM
CatS IC50 nM
CatL IC50 nM
CatB IC50 nM
GSH t1/2 min
logD
560
890
1400
6100
440
0.7
1000
2
47
910
2000
>10,000
2700
2.8
>10,000
>10,000
3600
3
a
10. Felbor, U.; Kessler, B.; Mothes, W.; Ploegh, H. L.; Goebel, H. H.; Bronson, R. T.;
Olsen, B. R. Proc. Nat. Acad. Sci. 2002, 99, 7883.
11. Oballa, R. M.; Truchon, J.-F.; Bayly, C. I.; Chauret, N.; Day, S.; Crane, S.;
Berthelette, C. Bioorg. Med. Chem. Lett. 2007, 17, 998.
Solubility
l
M
67
27
16
25
PAMPA 106 cm/s
Human % free
NTe
5.3
12. Morley, A. D.; Crawford, J.; MacFaul, P. A. Bioorg. Med. Chem. Lett., in press. doi:
hERG IC50
Ames
l
M
>100
52
70
Àve
Àve
NTe
13. Guengerich, F. P.; MacDonald, J. S. Chem. Res. Toxicol. 2007, 20, 344.
14. OELeatherface is a version of the Leatherface molecular editor (Ref. 15) written
by Hongming Chen (AstraZeneca Mölndal) that uses the SMARTS parser
supplied by OpenEye Scientific Software (Santa Fe, NM) to perform
substructural matches.
15. Kenny, P. W.; Sadowski, J. Structure Modification in Chemical Databases. In
Chemoinformatics in Drug Discovery; Oprea, T. I., Ed.; Wiley-VCH Verlag GmbH:
Weinheim, 2005; p 271.
16. In the trim modes of Leatherface and OELeatherface, the complete molecular
editing sequence is repeated until the molecule remains unchanged. This
allows removal of structurally complex substituents to be specified using a
small number of simple substructural definitions (e.g., atom with only one
non-hydrogen connection).
CYP IC50
l
Mb
>10 (5:5)
>10 (5:5)
>10 (5:5)
Clint Rat Hepsc
<2
11
13
5.1
3.1
70%
4.7
<2
14
5
3
36%
19
18
10
3
2.7
42%
Clint Human Micsd
Rat Cl ml/min/kg
Rat t1/2
h
Rat Vdss l/kg
Rat bioavailability
a
The glutathione reactivity assay is described in Ref. 12.
b
c
Inhibition of cytochrome P450 isoforms: 1A2, 2C9, 2C19, 2D6, and 3A4.
Intrinsic clearance, rat hepatocytes (
l/min/106 cells).
l/min/mg).
l
d
e
Intrinsic clearance, human microsomes (
l
17. Weininger, D.; Weininger, A.; Weininger, J. L. J. Chem. Inf. Comput. Sci. 1989, 29,
Not tested.
97.
18. Algorithms for writing canonical SMILES generate the same string for
a
specific structure regardless of the ordering of atoms in that structure.
This allows identity of molecules to be established by character string
matching.
GSH t1/2 measured for 19. This observation provides evidence that
the R1 and R2 substituents make significant contributions to free
energy of binding to Cathepsin K.
19. Weininger, D. J. Chem. Inf. Comput. Sci. 1988, 28, 31.
20. Lewell, X. Q.; Judd, D. B.; Watson, S. P.; Hann, M. M. J. Chem. Inf. Comput. Sci.
1998, 38, 511.
21. Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M. A.; Waldmann, H. J.
Chem. Inf. Model 2007, 47, 47.
22. Birch, A. M.; Kenny, P. W.; Simpson, I.; Whittamore, P. R. O. Bioorg. Med. Chem.
Lett. 2009, 19, 850.
23. Leach, A. G.; Jones, H. D.; Cosgrove, D. A.; Kenny, P. W.; Ruston, L.; MacFaul, P.;
Wood, J. M.; Colclough, N.; Law, B. J. Med. Chem. 2006, 49, 6672.
Good physicochemical and in vivo pharmacokinetic profiles
were observed for these compounds. Acceptable half-lives were
achieved with modest volumes and the compounds were readily
bioavailable. Despite the presence of the aniline-like amino group,
neither 12 nor 19 showed activity in the Ames test either in the
presence or absence of metabolizing enzymes. The good pharma-
cokinetic properties of compounds 12, 13, and 19 combined with
the eightfold dynamic range in GSH t1/2 suggest value as tools with
which to investigate the link between glutathione reactivity and
covalent adduct formation.
24. Model of binding mode the covalent adduct of
6 with Cathepsin K was
home/home.do) entry with reference code 1U9X (Ref. 5) using the Maestro
molecular modelling program. This model was energy-minimized using
MacroModel (OPLS 2005 force field; water solvent model). Both Maestro and