Organic Letters
Letter
Scheme 4. Transformations of Dienes 5b and 5e
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data for all new
compounds are provided. This material is available free of
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
3). It is worth noting that these boronate partners were
previously obtained by a Heck coupling. Only a few
combinations among all possible are depicted here showing
that this short sequence of reactions provides an easy and
modular access to a large variety of polyenic frameworks.
REFERENCES
■
(1) (b) Madden, K. S.; Mosa, F.; Whiting, A. Org. Biomol. Chem. 2014,
12, 7877. (a) Whiting, A.; Thirsk, C. J. Chem. Soc., Perkin Trans. 1 2002,
8, 999.
(2) Maryanoff, B. E.; Reitz, B. Chem. Rev. 1989, 89, 863.
(3) Wadsworth, W. S. Org. React. 1977, 25, 73.
Table 3. Synthesis of Tetraenes 10a−c
(4) (a) Blakemore, P. R. J. J. Chem. Soc., Perkin Trans. 1 2002, 2563.
́ ̌
(b) Aïssa, C. Eur. J. Org. Chem. 2009, 1831. (c) Marko, I. E.; Pospísil, J. In
Science of Synthesis, Vol 47a: Alkenes; de Meijere, A., Ed.; George Thieme
Verlag: Stuttgart, 2009, 105.
(5) (a) Diederich, F.; Stang, P. Metal-Catalyzed Cross-Coupling
Reactions; Wiley-VCH, Weinheim, 1998. (b) Negishi, E. I. Handbook
of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons:
New York, 2002; Vol. 1. (c) Metal-Catalyzed Cross-Coupling Reactions
and More; de Meijere, A., Brase, S., Oestreich, M., Eds.; Wiley-VCH:
̈
Weinheim, 2014. (d) Carboni, B.; Carreaux, F.; Molander, G. A.; Wolfe,
J. P.; Larhed, M. Science of Synthesis, Cross-Coupling and Heck-Type
Reactions, 1 George Thieme Verlag: Stuttgart, 2013; pp 265−321.
(e) Negishi, E. I.; Wang, G.; Rao, H.; Xu, Z. J. Org. Chem. 2010, 75, 3151.
(6) Cross-metathesis has been used for diene synthesis; see:
Wojtkielewicz, A. Curr. Org. Synth. 2013, 10, 43.
(7) (a) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716.
(b) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008, 130, 14084.
(c) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131,
6961. (d) Close, A. J.; Kemmitt, P.; Emmerson, M. K.; Spencer, J.
Tetrahedron 2014, 70, 9125.
(8) For other surrogates, see: (a) Molander, G. A.; Felix, L. A. J. Org.
Chem. 2005, 70, 3950. (b) Molander, G. A.; Sandrock, D. L. J. Am. Chem.
Soc. 2008, 130, 15792. (c) Nogushi, H.; Hojo, K.; Suginome, M. J. Am.
Chem. Soc. 2007, 129, 758. (d) Nogushi, H.; Shioda, T.; Chou, C.-M.;
Suginome, M. Org. Lett. 2008, 10, 377. (e) Li, J.; Burke, M. D. J. Am.
Chem. Soc. 2011, 133, 13774.
a
1
The isomeric purity was evaluated on the H NMR spectrum after
purification.
During the course of our studies toward the synthesis of the
macrolactam mirabalin, we were interested in the preparation of
tetraene 13 (Scheme 5).21 Starting from the Heck product 3g,
the targeted compound could be prepared in 3 steps with a
satisfying global yield of 46%.22 This straightforward synthesis
advantageously competes with those already reported in the
literature to access the same tetraenic motif.23,24
Scheme 5. Straightforward Synthesis of Tetraene 13
(9) (a) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc.
2008, 130, 466. (b) Lee, S. J.; Anderson, T. M.; Burke, M. D. Angew.
Chem., Int. Ed. 2010, 49, 8860. (c) Woerly, E. M.; Struble, J. R.; Palyam,
N.; O’Hara, S. P.; Burke, M. D. Tetrahedron 2011, 67, 4333. (d) Woerly,
E. M.; Miller, J. E.; Burke, M. D. Tetrahedron 2013, 69, 7732. (e) Woerly,
E. M.; Roy, J.; Burke, M. D. Nature Chem. 2014, 6, 484. (f) Weber, A.;
Dehn, R.; Schlager, N.; Dieter, B.; Kirschning, A. Org. Lett. 2014, 16,
̈
568. (g) McLaughlin, M. G.; McAdam, C. A.; Cook, M. J. Org. Lett.
2015, 17, 10.
In conclusion, a simple, general and chemoselective Heck
coupling involving an alkenyl iodoboronate is reported. A wide
range of alkenes was compatible with the conditions, providing a
library of dienic compounds. The stereoselective method gave a
straightforward access to bis-functionalized building blocks,
which could be easily transformed into polyenic frameworks. The
use of simple olefins as the coupling partner makes the reaction
easy-to-run even on highly advanced synthetic intermediates as
no preparation of alkenyl metal is required. As such, this modular
strategy should rapidly enter into the chemist toolbox for the
construction of polyenic natural and non-natural products.
(10) For recent reviews on iterative cross-coupling, see: (a) Wang, C.;
Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 5240. (b) Tobisu, M.;
Chatani, N. Angew. Chem., Int. Ed. 2009, 48, 3565.
(11) For reviews on Heck reaction, see: (a) Beletskaya, I. P.;
Cheprakov, A. V. Chem. Rev. 2000, 100, 3009. (b) Alonso, F.; Beletskaya,
I. P.; Yus, M. Tetrahedron 2005, 61, 11771.
(12) Alternatively, Heck coupling reactions involving vinyl boronates
have been reported for the construction of dienes. For selected
examples, see: (a) Stewart, S. K.; Whiting, A. Tetrahedron Lett. 1995, 36,
́ ́
3925. (b) Henaff, N.; Whiting, A. Org. Lett. 1999, 1, 1137. (c) Henaff,
N.; Whiting, A. Tetrahedron 2000, 56, 5193. (d) Lightfoot, A. P.; Maw,
G.; Thirsk, C.; Twiddle, S. J. R.; Whiting, A. Tetrahedron Lett. 2003, 44,
C
Org. Lett. XXXX, XXX, XXX−XXX