ꢀꢀꢀꢁ
8ꢀ ꢀW.A. Ewes et al.: 1,5-Diphenylpyrazoles as breast cancer cell growth inhibitors
[10] Bouabdallah, I.; M’Barek, L. A.; Zyad, A.; Ramdani, A.; Zidane, I.;
Melhaoui, A. New pyrazolic compounds as cytotoxic agents.
Nat. Prod. Res. 2007, 21, 298–302.
[11] Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.;
Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based
compounds containing pyrazoline moiety and evaluation
of their anticancer activity. Eur. J. Med. Chem. 2009, 44,
1396–1404.
analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-
1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential
antitumor agents. Bioorg. Med. Chem. 2010, 18, 4965–4974.
[26] Farag, A. M.; Ali, A. K.; El-Debss, M. A.; Mayhoub, A. S.;
Amr, A. E.; Abdel-Hafez, N. A.; Abdulla, M. M. Design, synthesis
and structure activity relationship study of novel pyrazole-
based heterocycles as potential antitumor agents. Eur. J. Med.
Chem. 2010, 45, 5887–5898.
[12] Shaharyar, M.; Abdullah, M. M.; Bakht, M. A.; Majeed, J. Pyra-
zoline bearing benzimidazoles: search for anticancer agent.
J. Eur. J. Med. Chem. 2010, 45, 114–119.
[13] Perchellet, E. M.; Ward, M. M.; Skaltsounis, A. L.; Kostakis, I. K.;
Pouli, N.; Marakos, P.; Perchellet, J. H. Antiproliferative and
proapoptotic activities of pyranoxanthenones, pyranothioxan-
thenones and their pyrazole-fused derivatives in HL-60 cells.
Anticancer Res. 2006, 26, 2791–2804.
[14] Koca, I.; Ozgur, A.; Coskun, K. A.; Tutar, Y. Synthesis and
anticancer activity of acyl thioureas bearing pyrazole moiety.
Bioorg. Med. Chem. 2013, 21, 3859–3865.
[15] Caliskan, B.; Yilmaz, A.; Evren, I.; Menevse, S.; Uludag, O.;
Banoglu, E. Synthesis and evaluation of analgesic, anti-
inflammatory, and anticancer activities of new pyrazole-3(5)-
carboxylic acid derivatives. Med. Chem. Res. 2013, 22,
782–793.
[16] Zheng, L. W.; Li, Y.; Ge, D.; Zhao, B. X.; Liu, Y. R.; Lv, H. S.;
Ding, J.; Miao, J. Y. Synthesis of novel oxime-containing pyra-
zole derivatives and discovery of regulators for apoptosis and
autophagy in A549 lung cancer cells. Bioorg. Med. Chem. Lett.
2010, 20, 4766–4770.
[17] Dang, C. T.; Dannenberg, A. J.; Subbaramaiah, K.; Dickler, M. N.;
Moasser, M. M.; Seidman, A. D.; D’Andrea, G. M.; Theodoulou,
M.; Panageas, K. S.; Norton, L.; et al. Phase II study of celecoxib
and transtuzumab in metastatic breast cancer patients who
have progressed after prior transtuzumzb-based treatments.
Cancer Res. 2004, 10, 4062–4067.
[18] Canney, P. A.; Machin, M. A.; Curto, J. A feasibility study of the
efficacy and tolerability of the combination of exemestane with
the COX-2 inhibitor celecoxib in post-menopausal patients with
advanced breast cancer. Eur. J. Cancer 2006, 42, 2751–2756.
[19] Prosperi, R. J.; Robertson, F. M. Cyclooxygenase-2 directly
regulates gene expression of P450 Cyp19 aromatase promoter
regions pII, pI.3 and pI.7 and estradiol production in human
breast tumor cells. Prostag. Oth. Lipid M. 2006, 81, 55–70.
[20] Singh, B.; Berry, J. A.; Shoher, A.; Lucci, A. COX-2 induces IL-11
production in human breast cancer cells. J. Surg. Res. 2006,
131, 267–275.
[21] Chow, L. W. C.; Yip, A. Y. S.; Loo, W. T. Y.; Toi, M. Evaluation of
neoadjuvant inhibition of aromatase activity and signal trans-
duction in breast cancer. Cancer Lett. 2008, 262, 232–238.
[22] Chow, L. W.; Cheng, C. W.; Wong, J. L.; Toi, M. Serum lipid
profiles in patients receiving endocrine treatment for breast
cancer–the results from the Celecoxib Anti-Aromatase
Neoadjuvant (CAAN) Trial. Biomed. Pharmacother. 2005, 59,
302–305.
[27] Zhang, D.; Wang, G.; Zhao, G.; Xu, W.; Huo, L. Synthesis and
cytotoxic activity of novel 3-(1H-indol-3-yl)-1H-pyrazole-5-carbo-
hydrazide derivatives. Eur. J. Med. Chem. 2011, 46, 5868–5877.
[28] Modzelewska, A.; Catherine, P.; Geetha, A. and Nancy, E. Anti-
cancer activities of novel chalcone and bis-chalcone deriva-
tives, Bioorg. Med. Chem. Lett. 2006, 14, 3491–3495.
[29] Ngameni, B.; Kuete, V.; Ambassa, P.; Justin, k.; Marlyse, M. L.;
Tchoukoua, A.; Roy, R.; Ngadjui, B. T.; Tetsuya, M. Synthesis
and evaluation of anticancer activity of O-allylchalcone deriva-
tives. Med. Chem. 2013, 3, 233–237.
[30] Juvale, K.; Pape, V. F.; Wiese, M. Investigation of chalcones
and benzochal-cones as inhibitors of breast cancer resistance
protein. Bioorg. Med. Chem. 2012, 20, 346–355.
[31] Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.;
Bharathi, E. V.; Prem Sagar, M. V. Synthesis and biological
evaluation of imidazopyridine/pyrimidine-chalcone deriva-
tives as potential anticancer agents. Med. Chem. Commun.
2010, 1, 355–360.
[32] Nofal, Z. M.; Soliman, E. A.; Abd El-karim, S. S.; El-zahar, M. I.;
Srour, A. M.; Sethumadhavan, S.; Maher, T. J. Novel benimida-
zole derivatives as expected anticancer agents. Acta Poloniae
Pharm. Drug Res. 2011, 68, 519–534.
[33] Thabit, M. G.; Atta, S. A.; Nasr, M. N. Synthesis and biological
evaluation of new 3-(4-subsituted phenyl)aminoquinoxaline
derivatives as anticancer agents. Heterocycl. Commun. 2015,
21, 25–35.
[34] Farag, A. M., Mayhoub, A. S.; Eldebss, M. A.; Amr, A. E.; Ali, A.K.;
Abdel-Hafez, N. A.; Abdulla, M. M. Synthesis and structure-
activity relationship studies of pyrazole-based heterocycles
as antitumor agents. Arch. Pharm. Chem. Life Sci. 2010, 343,
384–396.
[35] Balbi, A.; Anzaldi, M. Macciò, C.; Aiello, C.; Mazzei, M.;
Gangemib, R.; Castagnola, P. Miele, M.; Rosanod, C.; Viale, M.
Synthesis and biological evaluation of novel pyrazole deriva-
tives with anticancer activity. Eur. J. Med. Chem. 2011, 46,
5293–5309.
[36] Nitulescu, G. M.; Draghici, C.; Missir, A. V. Synthesis of new
pyrazole derivatives and their anticancer evaluation. Eur. J.
Med. Chem. 2010, 45, 4914–4919.
[37] Moa, W. Y.; Liang, Y. J.; Gu, Y. C.; Fu, L. W.; He, H. W. Synthesis
and cytotoxicity of 8-cyano-3-substitutedalkyl-5-methyl-
4-methylene-7-methoxy-3,4-dihydropyrido[4,3-d]pyrimidines.
Bioorg. Med. Chem. Lett. 2011, 21, 5975–5977.
[38] Ghorab, M. M.; El-Gazzar, M. G.; Alsaid; M. S. Synthesis, char-
acterization and anti-breast cancer activity of new 4-aminoanti-
pyrine-based heterocycles. Int. J. Mol. Sci. 2014, 15, 7539–7553.
[39] Ansari, F. L.; Iftikhar, F.; Ul-Haq, I.; Mirza, B.; Baseer, M.;
Rashid, U. Solid-phase synthesis and biological evaluation of
a parallel library of 2,3-dihydro-1,5-benzothiazepines. Bioorg.
Med. Chem. 2008, 16, 7691–7697.
[23] Brodie, A. M. Aromatase, its inhibitors and their usein breast
cancer treatment. Pharmacol. Ther. 1993, 60, 501–515.
[24] Miller, W. L. Molecular biology of steroid hormone synthesis.
Endocr. Rev. 1988, 9, 295–318.
[25] Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonia, R.;
Nogueras, M. Sanchez, A.; Cobo, J. Synthesis of novel pyrazolic
[40] Bariwal, J. B.; Upadhyay, K. D.; Manvar, A. T.; Trivedi, J. C.;
Singh, J. S.; Jain, K. S.; Shah, A. K. 1,5-Benzothiazepine, a
Brought to you by | University of California
Authenticated
Download Date | 11/25/15 11:13 AM