ION COMPLEXATION OF para-tert-BUTYLCALIX[4]ARENE ESTERS
767
equilibrium is:
(s, OCH2, 8 H), 6.70 (d, J 9 Hz arom. C—H, 4 H), 7.17 (s,
arom. CH, 8 H), 7.28 (d, J 9 Hz arom. C—H, 4 H).
½LMþ ꢂ Piꢀorg
ꢁ
p-Methyl-phenyl ester (5). NMR-1H (CDCl3) NMR
d 1.10 [s, C(CH3)3, 36H), 1.63 (s, ArCH3, 12 H), 3.26 [d, J
14 Hz, ax. PhCH2Ph, 4 H), 4.80 (d, J 14 Hz, eq. PhCH2Ph,
4 H), 5.06 (s, OCH2, 8 H), 6.82 (s, arom. CH, 8 H), 6.86
(d, J 9 Hz arom. C—H, 8 H), 7.04 (d, J 9 Hz arom. C—H,
8 H). NMR 13C (CDCl3): 169.24, 153.06, 148.14, 145.74,
135.06, 133.48, 129.73, 125.46, 121.35, 76.58, 71.27,
33.86, 31.97, 31.35, 20.85; elem. anal.: C ¼ 74.66;
H ¼ 6.99, calc. for C80H88O12.3/4CH2Cl2: C ¼ 74.31;
H ¼ 6.99.
Ke ¼
(1)
g2ꢃ½Mþaqꢁ½Piaꢀqꢁf½Lorgꢁo ꢀ ½LMþ ꢂ Piꢀorgꢁg
where ½Lorgꢁo ¼ ½Piꢀꢁo ¼ ½Piaꢀqꢁ þ ½Pioꢀrgꢁ ¼ 1:25 ꢄ 10ꢀ4
mol ꢂ Lꢀ1 and [Mþaq] ¼ 1.0 ꢄ 10ꢀ2 mol ꢂ Lꢀ1; the activity
coefficient of the ions was determined as g ¼ 0.8, and in
order to determine [LMþ ꢂ Pi]org, ePiꢀ ¼ 1.5 ꢄ 104 was
used.
Quantum chemical calculations
Phenyl ester (6). NMR-1H (CDCl3) 1.11 (s, C(CH3)3,
36 H), 3.27 (d, J 14 Hz, ax. PhCH2Ph, 4 H), 4.88 (d, J
14 Hz, eq. PhCH2Ph, 4 H), 5.13 (s, OCH2, 8 H), 6.84 (s,
arom. CH, 8 H), 6.97 (d, J 9 Hz arom. C—H, 8 H), 7.15
(m, J 9 Hz arom. C—H, 8 H), 7.25 (d, arom. C–H, 4 H).;
NMR 13C (CDCl3): 168.98, 152.95, 150.36, 145.58,
133.49, 129.27, 125.99, 129.57, 121.69, 71.24, 33.93,
31.63, 31.41; elem. anal.: C ¼ 74.49; H ¼ 6.38 calc. for
C76H80O12.1/2CH2Cl2: C ¼ 74.83; H ¼ 6.65.
p-Chloro-phenyl ester (7). NMR-1H (CDCl3) 1.11 (s,
C(CH3)3, 36 H), 3.27 (d, J 14 Hz, ax. PhCH2Ph, 4 H), 4.90
(d, J 14 Hz, eq. PhCH2Ph, 4 H), 5.08 (s, OCH2, 8 H), 6.84
(s, arom. CH, 8 H), 6.87 (d, J 9 Hz arom. C—H, 8 H), 7.21
(d, J 9 Hz arom. C—H, 8 H). NMR 13C (CDCl3): 168.65,
152.71, 148.71, 145.84, 133.34, 131.10, 129.33, 125.57,
122.99, 71.04, 31.80, 31.34; elem. anal.: C ¼ 68.86;
H ¼ 5.79, calc. for C76H76Cl4O12: C ¼ 68.86; H ¼ 5.38.
p-Nitro-ester (8). NMR-1H (CDCl3) 1.12 (s, C(CH3)3,
36 H), 3.31 (d, J 14 Hz, ax. PhCH2Ph, 4 H), 4.87 (d, J
14 Hz, eq. PhCH2Ph, 4 H), 5.14 (s, OCH2, 8 H), 6.86 (s,
arom. CH, 8 H), 7.14 (d, J 9 Hz arom. C—H, 8 H), 8.11 (d,
J 9 Hz arom. C—H, 8 H). NMR 13C (CDCl3): 190.07,
170.05, 168.19, 162.15, 154.76, 152.47, 125.71, 125.02,
122.35, 71.02, 31.80, 31.36; elem. anal.: C ¼ 65.77;
H ¼ 5.61; N ¼ 3.75 calc. for C76H76N4O20.1/3CH2Cl2:
C ¼ 68.86; H ¼ 5.38; N ¼ 4.02.
The semi-empirical program package MOPAC 6.0 was
used in all calculations. For each compound, compu-
tations were carried out with both the AM112 and the
PM313 parameterizations. Input files were conveniently
generated and before being processed the output files
were visualized with RasMol 2.7.1 software. The
molecular structures obtained in this way were used in
a configuration interaction calculation to compute
electron density on O1, O2, O3, and C1, HOMO and
LUMO energies.
p-Methoxy-phenyl ester (3). NMR-1H (CDCl3) 1.10
(s, C(CH3)3, 36 H), 3.29 (d, J 14 Hz, ax. PhCH2Ph, 4 H),
3.76 (s, OCH3, 12 H), 4.96 (d, J 14 Hz, eq. PhCH2Ph,
4 H), 5.09 (s, OCH2, 8 H), 6.74 (d, J 9 Hz arom. CH, 4 H),
6.83 (s, arom. CH, 8 H), 6.90 (d, J 9 Hz arom. C–H, 8 H);
NMR 13C (CDCl3) 169.28, 157.00, 152.98, 145.50,
143.86, 133.46, 125.46, 122.49, 114.24, 77.76, 71.21,
55.49, 33.87, 31.92, 31.37, 30.97; elem. anal.: C ¼ 72.41;
H ¼ 6.60, calc. for C80H88O16.1/3CH2Cl2: C ¼ 72.34;
H ¼ 6.70.
(3)-Naþ picꢀ. NMR-1H (CDCl3) 1.25 (s, C(CH3)3,
36 H), 3.49 (d, J 12 Hz, ax. PhCH2Ph, 4 H), 3.85
(s, OCH3, 12 H), 4.26 (d, 14 Hz, eq. PhCH2Ph, 4 H),
4.67 (s, OCH2, 8 H), 6.43 (d, J 9 Hz arom. C–H, 4 H), 6.73
(s, arom. CH, 8 H), 7.17 (d, J 9 Hz arom. C–H, 8 H).
p-tert-Butyl-phenyl ester (4). NMR-1H (CDCl3)
1.10 (s, C(CH3)3, 36 H), 1.28 (s, C(CH3)3, 36 H), 3.30
(d, J 14 Hz, ax. PhCH2Ph, 4 H), 4.96 (d, 14 Hz,
eq. PhCH2Ph, 4 H), 5.12 (s, OCH2, 8 H), 6.83 (s, arom.
CH, 8 H), 6.92 (d, J 9 Hz arom. C—H, 4 H), 7.26 (d, J
9 Hz arom. C—H, 4 H), NMR 13C (CDCl3): 169.24,
153.00, 148.28, 148.01, 145.47, 133.52, 126.10, 125.46,
120.98, 71.03, 34.42, 33.90, 32.03, 31.42, elem. anal.:
C ¼ 77.28; H ¼ 7.87, calc. for C92H112O12.1/3CH2Cl2:
C ¼ 77.11; H ¼ 7.90.
RESULTS AND DISCUSSION
Extraction data show that phenolic esters 3–8 are
selective for sodium, as is known for alkyl esters of
calix[4]arenes, due to the correct fit of the ionic radii with
the size of the cavity.14 The selectivity decreases as the
electron withdrawing ability of the group at para position
increases. The best receptor is compound 3, for which the
percentage extraction (%E) of Naþ found was 85% and
the selectivity expressed in terms of KNaþ =KKþ is 150, as
reported in Table 1. Such values are not the best possible,
when compared with the ethyl ester, but fall within the
range of other alkyl esters.
(4)-Naþ picꢀ. NMR-1H (CDCl3) 1.16 (s, C(CH3)3,
36 H), 1.29 (s, C(CH3)3, 36 H), 3.52 (d, J 13 Hz, ax.
PhCH2Ph, 4 H), 4.29 (d, J 13 Hz, eq. PhCH2Ph, 4 H), 4.70
Copyright # 2007 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2006; 19: 765–770