C.-H. Li, S. C. F. Kui, I. H. T. Sham, S. S.-Y. Chui, C.-M. Che
FULL PAPER
SADABS supplied by Bruker.[27] The structures were solved by di-
rect methods using the program SHELXL-97 and refinement of F2
by full-matrix least-squares procedures was carried out with
SHELXTL software.[28] All non-hydrogen atoms were anisotropi-
cally refined. The hydrogen atoms were located theoretically and
not refined.[14]
[12]
[13]
[14]
H.-Y. Chao, W. Lu, Y. Li, M. C. W. Chan, C.-M. Che, K.-K.
Cheung, N. Zhu, J. Am. Chem. Soc. 2002, 124, 14696–14706.
W. Lu, H.-F. Xiang, N. Zhu, C.-M. Che, Organometallics 2002,
21, 2343–2346.
CCDC-651974 (for 1), -651975 (for 2), -651976 (for 3), -651977
(for 4) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
J. M. Forward, D. Bohmann, J. P. Fackler Jr, R. J. Staples, In-
org. Chem. 1995, 34, 6330–6336.
S.-Y. Ho, E. C.-C. Cheng, E. R. T. Tiekink, V. W.-W. Yam, In-
org. Chem. 2006, 45, 8165–8174.
Computational Details: Calculations on the electronic ground and
excited states of the metal complexes were carried out using B3LYP
density functional theory. B3LYP corresponds to the combination
of Becke’s three-parameter exchange functional (B3) with the Lee–
Yang–Parr for the correlation functional (LYP). Quasi-relativistic
pseudo-potentials proposed by Wadt and Hay[29–30] with 19 valence
electrons and the LANL2DZ basis sets for Au, Cu, P, S, C, and H
were adopted. Two additional f-type functions are supplemented
for Au (αf = 0.2, 1.19), Cu (αf = 0.24, 3.70)[31] and one d-type
function is added to S (αd = 0.421), P (αd = 0.34), O (αd = 1.154),
N (αd = 0.864), and P (αd = 0.6), respectively.[32] The initial models
were used from the crystal structure. To save computational re-
sources, the phenyl and cyclohexyl groups were represented by hy-
drogen in all calculations of this work, as this has been validated
by previous studies.[6,33–34] The equilibrium ground-state geome-
tries were computed using the B3LYP functional with the
LanL2DZ basis set and fully optimized without symmetry con-
straints. At the correct ground-state geometry optimizations, time-
dependent DFT (TDDFT) calculations using the B3LYP func-
tional were performed to obtain the electronic transition energy of
the model complexes. The solvent effect was simulated by using the
polarizable continuum model (PCM), in which the solvent cavity is
seen as a union of interlocking atomic spheres. All the calculations
described here were carried out by using the Gaussian 03 pack-
age.[35]
[15]
[16]
[17]
[18]
A. Maspero, I. Kani, A. A. Mohamed, M. A. Omary, R. J. Sta-
ples, J. P. Fackler Jr, Inorg. Chem. 2003, 42, 5311–5319.
R. Narayanaswamy, M. A. Young, E. Parkhurst, M. Ouellette,
M. E. Kerr, D. M. Ho, R. C. Elder, A. E. Bruce, M. R. M.
Bruce, Inorg. Chem. 1993, 32, 2506–2517.
I. G. Dance, M. L. Scudder, L. J. Fitzpatrick, Inorg. Chem.
1985, 24, 2547–2550.
H. Xu, J. H. K. Yip, Inorg. Chem. 2003, 42, 4492–4494.
T. C. Deivaraj, G. X. Lai, J. J. Vittal, Inorg. Chem. 2000, 39,
1028–1034.
S. B. Novakovic´, B. Fraisse, G. A. Bogdanovic´, A. S. Bivé,
Cryst. Growth Des. 2007, 7, 191–195.
M. M. Savas, W. R. Mason, Inorg. Chem. 1987, 26, 301–307.
A. K. Al-Sa’Ady, C. A. McAuliffe, R. V. Parish, J. A. Sand-
bank, R. A. Potts, W. T. Schneider, Inorg. Synth. 1985, 23, 191–
194.
I. G. Dance, P. J. Guerney, A. D. Rae, M. L. Scudder, Inorg.
Chem. 1983, 22, 2883–2887.
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
Siemens, SAINT, v4 Software Reference Manual, Siemens An-
alytical X-ray Systems, Inc., Madison, WI, USA, 1996.
G. M. Sheldrick, SADABS, Program for Empirical Absorption
Correction of Area Detector Data, University of Göttingen,
Göttingen, Germany, 1996.
Supporting Information (see also the footnote on the first page of
this article): Crystal structure of 1, absorption and emission spectra
of 1–4 in various media, absorption spectrum of the 4-nitrophen-
ylthiolate ligand.
[28]
Siemens, SHELXTL, Version 5.1, Reference Manual, Siemens
Analytical X-ray Systems, Inc., Madison, WI, USA, 1996.
[29]
[30]
[31]
[32]
W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284–298.
W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 299–310.
P. Pyykkö, F. Mendizabal, Inorg. Chem. 1998, 37, 3018–3025.
S. Huzinaga, Gaussian Basis Sets for Molecular Calculations,
Elsevier, Amsterdam, 1984.
P. Pyykkö, Y. Zhao, Angew. Chem. Int. Ed. Engl. 1991, 30, 604–
605.
B.-H. Xia, H.-X. Zhang, C.-M. Che, K.-H. Leung, D. L. Phil-
lips, N. Zhu, Z.-Y. Zhou, J. Am. Chem. Soc. 2003, 125, 10362–
10374.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Mont-
gomery Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C.
Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson,
P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rab-
uck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Or-
tiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Pis-
korz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Re-
plogle, J. A. Pople, Gaussian 03, Revision B.05 (Gaussian 98,
Revision A.9), Gaussian, Inc., Pittsburgh, PA, 2003.
Acknowledgments
We gratefully acknowledge financial support by the National Natu-
ral Science Foundation of China, Research Grants Council - Joint
Research Scheme (N_HKU 742/04).
[33]
[34]
[1] P. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625–
3647.
[2] V. W.-W. Yam, K. K.-W. Lo, Chem. Soc. Rev. 1999, 28, 323–
[35]
334.
[3] C.-M. Che, S.-W. Lai, Coord. Chem. Rev. 2005, 249, 1296–1309.
[4] D. L. Phillips, C.-M. Che, K. H. Leung, Z. Mao, M.-C. Tse,
Coord. Chem. Rev. 2005, 249, 1476–1490.
[5] W.-F. Fu, K.-C. Chan, V. M. Miskowski, C.-M. Che, Angew.
Chem. Int. Ed. 1999, 38, 2783–2785.
[6] H.-X. Zhang, C.-M. Che, Chem. Eur. J. 2001, 7, 4887–4893.
[7] Z. Mao, H.-Y. Chao, Z. Hui, C.-M. Che, W.-F. Fu, K.-K.
Cheung, N. Zhu, Chem. Eur. J. 2003, 9, 2885–2894.
[8] P. J. Costa, M. J. Calhorda, Inorg. Chim. Acta 2006, 359, 3617–
3624.
[9] C.-K. Li, X.-X. Lu, K. M.-C. Wong, C.-L. Chan, N. Zhu,
V. W.-W. Yam, Inorg. Chem. 2004, 43, 7421–7430.
[10] V. W.-W. Yam, C.-K. Li, C.-L. Chan, Angew. Chem. Int. Ed.
Engl. 1998, 37, 2857–2859.
[11] C.-M. Che, H.-Y. Chao, V. M. Miskowski, Y. Li, K.-K.
Cheung, J. Am. Chem. Soc. 2001, 123, 4985–4991.
Received: June 29, 2007
Published Online: April 15, 2008
2428
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 2421–2428