LETTER
Synthesis of Oseltamivir from D-Mannitol
785
7.95 Hz, 1 H), 2.43–2.36 (m, 4 H), 1.68–1.60 (m, 4 H), 1.25
(t, J = 7.0 Hz, 3 H), 0.95–0.88 (m, 6 H). 13C NMR (125
MHz, CDCl3): d = 172.7, 133.3, 128.5, 113.0, 77.3, 69.9,
60.3, 33.5, 29.9, 29.8, 27.4, 14.2, 8.1, 8.0. HRMS (EI+):
m/z calcd for C14H24O4: 256.1675; found: 256.1655.
(10) A solution of ester 4 in toluene was added dropwise to a
solution of DIBAL-H in toluene. As the relevant papers,
see: (a) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K.
Chem. Lett. 1983, 1593. (b) Mori, A.; Fujiwara, J.;
Maruoka, K.; Yamamoto, H. Tetrahedron Lett. 1983, 24,
4581.
(11) First we prepared a corresponding dibenzyl ether of 5a,
which proved to be cleaved in a later azide-formation step
affording a complex mixture.
(12) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino,
G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa,
K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992,
57, 2768.
References and Notes
(1) Present address: School of Pharmaceutical Sciences, Teikyo
University, 1091-1 Suarashi, Sagamiko, Sagamihara, 229-
0195, Japan.
(2) (a) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang,
L.; Swaminathan, S.; Bischofberger, N.; Chen, M. S.;
Mendel, D. B.; Tai, C. Y.; Laver, W. G.; Stevens, R. C.
J. Am. Chem. Soc. 1997, 119, 681. (b) Rohloff, J. C.; Kent,
K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.;
Kelly, D. E.; Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe,
E. J.; Schultze, L. M.; Yu, R. H.; Zhang, L. J. Org. Chem.
1998, 63, 4545. (c) Federspiel, M.; Fischer, R.; Henning,
M.; Mair, H.-J.; Oberhauser, T.; Rimmler, G.; Albiez, T.;
Bruhin, J.; Estermann, H.; Gandert, C.; Göckel, V.; Götzö,
S.; Hoffmann, U.; Huber, G.; Janatsch, G.; Lauper, S.;
Röckel-Stäbler, O.; Trusssardi, R.; Zwahlen, A. G. Org.
Process Res. Dev. 1999, 3, 266. (d) Karpf, M.; Trussardi, R.
J. Org. Chem. 2001, 66, 2044. (e) Harrington, P. J.; Brown,
J. D.; Foderaro, T.; Hughes, R. C. Org. Process Res. Dev.
2004, 8, 86.
(13) The attempted dihydroxylations with OsO4/NMO and with
AD-mix-a provided a 1:1 to 1:2 mixture of diastereomers
with respect to the 3-pentyloxy group.
(14) Hydrogenolysis (10% Pd/C, EtOAc, r.t., 48 h) of 7a also
provided 7b with poor reproducibility probably owing to
poisoning by the accumulated contaminations.
(3) Farina, V.; Brown, J. D. Angew. Chem. Int. Ed. 2006, 45,
7330.
(4) (a) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc.
2006, 128, 6310. (b) Fukuta, Y.; Mita, T.; Fukuda, N.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128,
6312. (c) Cong, X.; Yao, Z. J. J. Org. Chem. 2006, 71, 5365.
(d) Mita, T.; Fukuda, N.; Roca, F. X.; Kanai, M.; Shibasaki,
M. Org. Lett. 2007, 9, 259. (e) Yamatsugu, K.; Kamijo, S.;
Suto, Y.; Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2007,
48, 1403. (f) Bromfield, K. M.; Graden, H.; Hagberg, D. P.;
Olsson, T.; Kann, N. Chem. Commun. 2007, 3183.
(g) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T.
Angew. Chem. Int. Ed. 2007, 46, 5734. (h) Shie, J.-J.; Fang,
J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang,
A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem.
Soc. 2007, 129, 11892. (i) Trost, B. M.; Zhang, T. Angew.
Chem. Int. Ed. 2008, 47, 1. (j) Zutter, U.; Iding, H.; Spurr,
P.; Wirz, B. J. Org. Chem. 2008, 73, 4895. (k) Shie, J.-J.;
Fang, J.-M.; Wong, C.-H. Angew. Chem. Int. Ed. 2008, 47,
5788. (l) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T.
Tetrahedron 2009, in press. (m) Yamatsugu, K.; Yin, L.;
Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. Angew.
Chem. Int. Ed. 2009, 48, 1070. (n) Ishikawa, H.; Suzuki, T.;
Hayashi, Y. Angew. Chem. Int. Ed. 2009, 48, 1304.
(5) for a recent review on the synthesis of oseltamivir (1), see:
Shibasaki, M.; Kanai, M. Eur. J. Org. Chem. 2008, 1839; see
also ref. 3.
(6) Schmid, C. R.; Bradley, D. A. Synthesis 1992, 587.
(7) The optical purity of 3 was determined as follows. The
HPLC analysis [Chiralcel OD; l = 254 nm; eluent: hexane–
EtOH (9:1); flow rate: 1.3 mL/min] of 3,5-dinitrobenzoate of
3 showed the two peaks based on their two diastereomers at
tR = 11.4 min and 22.3 min, respectively. On the other hand,
those of racemic 3, prepared from glycerol via acetalization,
Swern oxidation, and Grignard reaction, showed four peaks
at tR = 11.4 min, 14.5 min, 18.7 min, and 22.2 min,
respectively. This observation surely indicates that 2 and 3
are formed without racemization throughout the sequential
reactions.
(15) Worster, P. M.; Leznoff, C. C.; McArthur, C. R. J. Org.
Chem. 1980, 45, 174.
(16) Compound 8b: [a]D21.5 –19.2 (c 1.07, CHCl3); mp 142.1–
143.5 °C. 1H NMR (500 MHz, CDCl3): d = 7.85–7.70 (m, 4
H), 6.77 (d, J = 9.8 Hz, 1 H), 4.77–4.72 (m, 1 H), 4.60–4.54
(m, 1 H), 3.80–3.60 (m, 5 H), 3.25–3.14 (m, 2 H), 2.28–2.18
(m, 1 H), 1.98 (s, 3 H), 1.95–1.86 (m, 1 H), 1.75 (br s, 1 H),
1.55–1.30 (m, 5 H), 1.11–0.98 (m, 2 H), 0.78–0.72 (m, 6 H).
13C NMR (125 MHz, CDCl3): d = 171.7, 169.2, 134.2, 131.6,
123.3, 79.2, 75.3, 61.8, 60.4, 52.5, 51.1, 29.2, 26.1, 25.5,
25.3, 22.9, 9.39, 9.37. Anal. Calcd for C22H32N2O6: C, 62.84,
H, 7.67, N, 6.66. Found: C, 62.70, H, 7.85, N, 6.65.
(17) Dialdehyde 9 was pure enough to be used for the next step.
However, it was labile to purification on silica gel column
chromatography for combustion analysis, affording a
complex mixture involving cyclized products.
(18) (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org.
Chem. 1987, 52, 2559. (b) Anelli, P. L.; Montanari, F.;
Quici, S. Org. Synth. 1990, 69, 212. (c) Leanna, M. R.;
Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992, 33,
5029.
(19) (a) Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Siret,
P.; Keck, G. E.; Gras, J.-L. J. Am. Chem. Soc. 1978, 100,
8031. (b) Snyder, S. A.; Corey, E. J. Tetrahedron Lett. 2006,
47, 2083.
(20) Compound 10: obtained as an off-white solid by washing
with hot toluene; [a]D22.5 –46.5 (c 1.10, CHCl3); mp 202.3–
202.7 °C. 1H NMR (500 MHz, CDCl3, data of a mixture of
rotamers): d = 9.55 (s, 0.13 H), 9.53 (s, 0.87 H), 7.86–7.72
(m, 4 H), 6.70 (s, 0.13 H), 6.67 (s, 0.87 H), 5.53 (d, J = 7.6
Hz, 0.87 H), 5.26 (d, J = 7.6 Hz, 0.13 H), 4.95–4.90 (m, 0.87
H), 4.75–4.71 (m, 0.87 H), 4.45–4.38 (m, 1.13 H), 4.20–4.18
(m, 0.13 H), 3.46–3.37 (m, 1 H), 3.05–2.98 (m, 1 H), 2.75–
2.65 (m, 1 H), 2.05 (s, 0.4 H), 1.78 (s, 2.6 H), 1.60–1.50 (m,
4 H), 1.00–0.85 (m, 6 H). 13C NMR (125 Hz, CDCl3, data of
a mixture of rotamers): d = 192.3, 170.3, 168.1, 147.6, 138.8,
134.2, 131.6, 128.5, 123.5, 82.5, 74.6, 54.3, 47.8, 26.3, 25.7,
25.5, 23.3, 9.7, 9.4. Anal. Calcd for C22H26N2O5: C, 66.32;
H, 6.58; N, 7.03. Found: C, 66.15; H, 6.72; N, 7.05. HRMS
(FAB+): m/z calcd for C22H27N2O5 [MH+]: 399.1920; found:
399.1925.
(8) Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom,
T. J.; Li, T.-T.; Faulkner, D. J.; Petersen, M. R. J. Am. Chem.
Soc. 1970, 92, 741.
(9) Compound 4: colorless oil; [a]D21.6 +24.0 (c 1.23, CHCl3); bp
110–112 °C/6.66·10–4 bar. 1H NMR (500 MHz, CDCl3): d =
5.80 (dt, J = 15.3, 6.4 Hz, 1 H), 5.48 (dd, J = 15.3, 7.9 Hz, 1
H), 4.45 (ddd, J = 8.25, 7.95, 6.1 Hz, 1 H), 4.13 (q, J = 7.0
Hz, 2 H), 4.10 (dd, J = 7.95, 6.1 Hz, 1 H), 3.51 (dd, J = 8.25,
(21) Gonzalez-Bello, C.; Coggins, J. R.; Hawkins, A. R.; Abell,
C. J. Chem. Soc., Perkin Trans. 1 1999, 849.
Synlett 2009, No. 5, 783–786 © Thieme Stuttgart · New York