3980 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 13
Boije af Genna¨s et al.
(16) Parker, P. J.; Coussens, L.; Totty, N.; Rhee, L.; Young, S.; Chen, E.;
Stabel, S.; Waterfield, M. D.; Ullrich, A. The complete primary
structure of protein kinase Csthe major phorbol ester receptor. Science
1986, 233, 853–859.
(17) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam,
S. The protein kinase complement of the human genome. Science 2002,
298, 1912–1934.
(18) Blumberg, P. M.; Kedei, N.; Lewin, N. E.; Yang, D.; Czifra, G.; Pu,
Y.; Peach, M. L.; Marquez, V. E. Wealth of opportunitysthe C1
domain as a target for drug development. Curr. Drug Targets 2008,
9, 641–652.
(19) Cameron, A. J.; Procyk, K. J.; Leitges, M.; Parker, P. J. PKC alpha
protein but not kinase activity is critical for glioma cell proliferation
and survival. Int. J. Cancer 2008, 123, 769–779.
(20) Zeidman, R.; Lofgren, B.; Pahlman, S.; Larsson, C. PKCepsilon, via
its regulatory domain and independently of its catalytic domain,
induces neurite-like processes in neuroblastoma cells. J. Cell Biol.
1999, 145, 713–726.
(21) Ono, Y.; Fujii, T.; Igarashi, K.; Kuno, T.; Tanaka, C.; Kikkawa, U.;
Nishizuka, Y. Phorbol ester binding to protein kinase C requires a
cysteine-rich zinc-finger-like sequence. Proc. Natl. Acad. Sci. U.S.A.
1989, 86, 4868–4871.
(22) Smith, J. B.; Smith, L.; Pettit, G. R. Bryostatins: potent, new mitogens
that mimic phorbol ester tumor promoters. Biochem. Biophys. Res.
Commun. 1985, 132, 939–945.
(23) Kozikowski, A. P.; Wang, S.; Ma, D.; Yao, J.; Ahmad, S.; Glazer,
R. I.; Bogi, K.; Acs, P.; Modarres, S.; Lewin, N. E.; Blumberg, P. M.
Modeling, chemistry, and biology of the benzolactam analogues of
indolactam V (ILV). 2. Identification of the binding site of the
benzolactams in the CRD2 activator-binding domain of PKCdelta and
discovery of an ILV analogue of improved isozyme selectivity. J. Med.
Chem. 1997, 40, 1316–1326.
instructions (see Materials and General Procedures). After a 30
min incubation on ice, the cell lysates were centrifuged at 16000g
for 15 min at 4 °C and the protein concentrations of the
supernatants were determined using Bradford’s method.57 The
samples were diluted in Laemmli sample buffer at equal
concentrations and stored at -20 °C. Then 20 µg of protein per
lane were subjected to SDS-PAGE and then transferred to
nitrocellulose membranes. Membranes were washed for 5 min
with 0.1% Tween 20 in Tris-buffered saline (TTBS) and then
blocked for 1 h with 5% nonfat milk powder in TTBS (milk-
TTBS). The membranes were then cut just above the 37 kDa
marker band and incubated with the primary antibody (Anti-
ACTIVE MAPK pAb 1:5000 or anti-GAPDH mAb 1:10 000 in
milk-TTBS) overnight at 4 °C. Membranes were then washed
for a total of 35 min with TTBS and incubated with horseradish
peroxidase-conjugated secondary antibody (goat antirabbit IgG
or goat antimouse IgG 1:3000 in milk-TTBS) for one hour at
room temperature. After washing (total of 40 min with TTBS),
the bands were visualized with ECL. GAPDH bands were used
as controls to ensure equal loading of proteins to all wells in
the SDS-PAGE gel. Western blots were quantified by measuring
the optical density of the immunoreactive bands with Scion
Image software (http://scioncorp.com).
Acknowledgment. We thank Matti Wahlsten, Sirkku
Ja¨ntti, and Teemu Nissila¨ for conducting the LC-MS analysis
as well as Minna Baarman, Marjo Vaha, and Tarja Va¨lima¨ki
for technical assistance. This work was supported by grants
from the European Commission Research (project no.
503467), the Academy of Finland (project no. 108376), the
Finnish Cultural Foundation, and the Magnus Ehrnrooth
Foundation.
(24) Kong, F. H.; Kishi, Y.; Perez-Sala, D.; Rando, R. R. The pharma-
cophore of debromoaplysiatoxin responsible for protein kinase C
activation. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1973–1976.
(25) Kedei, N.; Lundberg, D. J.; Toth, A.; Welburn, P.; Garfield, S. H.;
Blumberg, P. M. Characterization of the interaction of ingenol
3-angelate with protein kinase C. Cancer Res. 2004, 64, 3243–3255.
(26) Shao, L.; Lewin, N. E.; Lorenzo, P. S.; Hu, Z.; Enyedy, I. J.; Garfield,
S. H.; Stone, J. C.; Marner, F. J.; Blumberg, P. M.; Wang, S. Iridals
are a novel class of ligands for phorbol ester receptors with modest
selectivity for the RasGRP receptor subfamily. J. Med. Chem. 2001,
44, 3872–3880.
Supporting Information Available: Synthesis procedures,
degree of purity (elemental analysis), spectroscopic data. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(27) Marquez, V. E.; Blumberg, P. M. Synthetic diacylglycerols (DAG)
and DAG-lactones as activators of protein kinase C (PK-C). Acc.
Chem. Res. 2003, 36, 434–443.
References
(1) Battaini, F.; Mochly-Rosen, D. Happy birthday protein kinase C: past,
present and future of a superfamily. Pharmacol. Res. 2007, 55, 461–
466.
(2) Koivunen, J.; Aaltonen, V.; Peltonen, J. Protein kinase C (PKC) family
in cancer progression. Cancer Lett. 2006, 235, 1–10.
(3) Griner, E. M.; Kazanietz, M. G. Protein kinase C and other diacylg-
lycerol effectors in cancer. Nat. ReV. Cancer. 2007, 7, 281–294.
(4) Das Evcimen, N.; King, G. L. The role of protein kinase C activation
and the vascular complications of diabetes. Pharmacol. Res. 2007,
55, 498–510.
(5) Bright, R.; Mochly-Rosen, D. The role of protein kinase C in cerebral
ischemic and reperfusion injury. Stroke 2005, 36, 2781–2790.
(6) Chou, W. H.; Messing, R. O. Protein kinase C isozymes in stroke.
Trends CardioVasc. Med. 2005, 15, 47–51.
(7) Sabri, A.; Steinberg, S. F. Protein kinase C isoform-selective signals
that lead to cardiac hypertrophy and the progression of heart failure.
Mol. Cell. Biochem. 2003, 251, 97–101.
(8) Alkon, D. L.; Sun, M. K.; Nelson, T. J. PKC signaling deficits: a
mechanistic hypothesis for the origins of Alzheimer’s disease. Trends
Pharmacol. Sci. 2007, 28, 51–60.
(9) Hofmann, J. Protein kinase C isozymes as potential targets for
anticancer therapy. Curr. Cancer. Drug Targets 2004, 4, 125–146.
(10) Newton, A. C. Protein kinase C: structural and spatial regulation by
phosphorylation, cofactors, and macromolecular interactions. Chem.
ReV. 2001, 101, 2353–2364.
(11) Steinberg, S. F. Structural basis of protein kinase C isoform function.
Physiol. ReV. 2008, 88, 1341–1378.
(12) Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids
and activation of protein kinase C. Science 1992, 258, 607–614.
(13) Kazanietz, M. G. Novel “nonkinase” phorbol ester receptors: the C1
domain connection. Mol. Pharmacol. 2002, 61, 759–767.
(14) Colon-Gonzalez, F.; Kazanietz, M. G. C1 domains exposed: from
diacylglycerol binding to protein-protein interactions. Biochim. Bio-
phys. Acta 2006, 1761, 827–837.
(15) Yang, C.; Kazanietz, M. G. Divergence and complexities in DAG
signaling: looking beyond PKC. Trends Pharmacol. Sci. 2003, 24,
602–608.
(28) Duan, D.; Sigano, D. M.; Kelley, J. A.; Lai, C. C.; Lewin, N. E.;
Kedei, N.; Peach, M. L.; Lee, J.; Abeyweera, T. P.; Rotenberg, S. A.;
Kim, H.; Kim, Y. H.; Kazzouli, S. E.; Chung, J. U.; Young, H. A.;
Young, M. R.; Baker, A.; Colburn, N. H.; Haimovitz-Friedman, A.;
Truman, J. P.; Parrish, D. A.; Deschamps, J. R.; Perry, N. A.; Surawski,
R. J.; Blumberg, P. M.; Marquez, V. E. Conformationally Constrained
Analogues of Diacylglycerol. 29. Cells Sort Diacylglycerol-Lactone
Chemical Zip Codes to Produce Diverse and Selective Biological
Activities. J. Med. Chem. 2008, 51, 5198–5220.
(29) Irie, K.; Nakagawa, Y.; Ohigashi, H. Toward the development of new
medicinal leads with selectivity for protein kinase C isozymes. Chem.
Rec. 2005, 5, 185–195.
(30) Yanagita, R. C.; Nakagawa, Y.; Yamanaka, N.; Kashiwagi, K.; Saito,
N.; Irie, K. Synthesis, conformational analysis, and biological evalu-
ation of 1-hexylindolactam-V10 as a selective activator for novel
protein kinase C isozymes. J. Med. Chem. 2008, 51, 46–56.
(31) Zhang, G.; Kazanietz, M. G.; Blumberg, P. M.; Hurley, J. H. Crystal
structure of the cys2 activator-binding domain of protein kinase C
delta in complex with phorbol ester. Cell 1995, 81, 917–924.
(32) Krauter, G.; Von der Lieth, C. W.; Schmidt, R.; Hecker, E. Structure/
activity relationships of polyfunctional diterpenes of the tigliane type.
A pharmacophore model for protein-kinase-C activators based on
structure/activity studies and molecular modeling of the tumor
promoters 12-O-tetradecanoylphorbol 13-acetate and 3-O-tetrade-
canoylingenol. Eur. J. Biochem. 1996, 242, 417–427.
(33) Sugita, K.; Neville, C. F.; Sodeoka, M.; Sasai, H.; Shibasaki, M.
Stereocontrolled syntheses of phorbol analogs and evaluation of their
binding affinity to PKC. Tetrahedron Lett. 1995, 36, 1067–1070.
(34) Benzaria, S.; Bienfait, B.; Nacro, K.; Wang, S.; Lewin, N. E.; Beheshti,
M.; Blumberg, P. M.; Marquez, V. E. Conformationally constrained
analogues of diacylglycerol (DAG). 15. The indispensable role of the
sn-1 and sn-2 carbonyls in the binding of DAG-lactones to protein
kinase C (PK-C). Bioorg. Med. Chem. Lett. 1998, 8, 3403–3408.
(35) Wang, S.; Zaharevitz, D. W.; Sharma, R.; Marquez, V. E.; Lewin,
N. E.; Du, L.; Blumberg, P. M.; Milne, G. W. The discovery of novel,
structurally diverse protein kinase C agonists through computer 3D-