Communications
(m, 2H, H-5,6), 4.21 (dd, J(9b,9a) = 12.4, J(9b,8) = 6.6 Hz, 1H, H-9b),
[12] a) E. J. Enholm, S. Jiang, Tetrahedron Lett. 1992, 33, 6069;
b) E. J. Enholm, S. Jiang, Heterocycles 1992, 34, 2 2 47; c) E. J.
Enholm, S. Jiang, K. Aboud, J. Org. Chem. 1993, 58, 4061.
[13] S. Hanessian, C. Girard, Synlett 1994, 863.
[14] A. Marra, P. Sinaþ, Carbohydr. Res. 1989, 190, 317.
[15] A. Lubineau, J. Le Gallic, J. Carbohydr. Chem. 1991, 10, 263.
[16] P. Girard, J.-L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980, 102,
2693.
4.05 (m, 4H, O(CH2)2O), 3.89 (s, 3H, COOCH3), 2.95 (s, 1H, OH),
2.58 (dd, J(3eq,3ax) = 12.8, J(3eq,4) = 4.5 Hz, 1H, H-3eq), 2.27, 2.22,
2.15, and 2.12 (4s, 12H, OCOCH3), 1.96 (s, 3H, NCOCH3), 1.94 (dd,
J(3ax,3eq) = 12.8, J(3ax,4) = 11.2Hz, 1H, H-3ax), 1.93–1.60 ppm (m,
8H, CH2 of cyclohexyl); 13C NMR (CDCl3, 90 MHz): d = 170.8, 170.7,
170.5, 170.1, 169.9, and 169.8 (4OCOCH3, NCOCH3, COOCH3),
108.1 (C of cyclohexyl), 85.7 (C2), 74.1 (COH), 73.1, 70.3, 68.7, 67.7
(C4, C6, C7, C8), 64.9, 63.9 (OCH2CH2O), 62.9 (C9), 52.2 (CH3O),
49.0 (C5), 32.9 (C3), 29.9, 29.7, 29.2, and 28.9 (4CH2 of cyclohexyl),
22.9, 21.1, 20.7, 20.6, and 20.5 ppm (4CH3OCO, CH3CON); MS (ES):
m/z 654 [M + Na]+; HR-MS (ES): calcd for C28H41NaNO15: 654.2368;
found: 654.2383.
[17] a) J. Haverkamp, T. Spoormaker, L. Dorland, J. F. G. Vliegen-
thart, J. Am. Chem. Soc. 1979, 101, 4851; b) D. W. Norbeck, J. B.
Kramer, P. A. Lartey, J. Org. Chem. 1987, 52, 2174.
[18] a) D. Zanini, R. Roy, J. Am. Chem. Soc. 1997, 119, 2088, and
references therein; b) G. B. Sigal, M. Mammen, G. Dahmann,
G. M. Whitesides, J. Am. Chem. Soc. 1996, 118, 3789.
[19] A. Marra, P. Sinaþ, Carbohydr. Res. 1989, 187, 35.
[20] J. Inanaga, M. Ishikawa, M. Yamaguchi, Chem. Lett. 1987, 1485.
[21] E. Hasegawa, D. P. Curran, J. Org. Chem. 1993, 58, 5008.
[22] For mechanistic studies, see: a) H. B. Kagan, J.-L. Namy, P.
Girard, Tetrahedron 1981, 37, 175; b) J.-L. Namy, J. Collin, C.
Bied, H. B. Kagan, Synlett 1992, 733; c) G. A. Molander, L. S.
Harring, J. Org. Chem. 1990, 55, 6171; d) D. P. Curran, T. L.
Fevig, M. J. Totleben, Synlett 1990, 773; e) D. P. Curran, X. Gu,
W. Zhang, P. Dowd, Tetrahedron 1997, 53, 9023.
Received: March 27, 2006
Revised: June 13, 2006
Published online: August 9, 2006
Keywords: carbohydrates · glycosides · metalation · samarium ·
.
sialic acids
[23] E. Prasad, R. A. Flowers II, J. Am. Chem. Soc. 2002, 124, 6357,
and references therein.
[1] Sialic Acids: Chemistry, Metabolism and Function (Ed.: R.
Schauer), Cell Biology Monograph Series, Vol. 10, Springer,
Vienna, 1982.
[2] a) R. Schauer in Carbohydrates in Chemistry and Biology, Vol. 3
(Eds.: B. Ernst, G. W. Hart, P. Sinaþ), Wiley-VCH, Weinheim,
2000, pp. 227 – 243; b) M. L. Allende, R. L. Proia, Curr. Opin.
Struct. Biol. 2002, 12, 587; c) P. R. Crocker, Curr. Opin. Struct.
Biol. 2002, 12, 609.
[24] These results parallel the reduction results of Hanessian and
Girard[13] when they used SmI2 with ethylene glycol, which
provided the two isomers 36 (R1 = H) and 37 (R2 = H) in a ratio
of 4:1. However, when the reduction of 1 or 2 was carried out
without any other electrophile, addition of a proton source (H2O
or ethylene glycol) after the reduction event provided only
product 36 (R1 = H).
[3] For selected recent reviews on the use of SmI2 in organic
synthesis, see: a) D. J. Edmonds, D. Johnston, D. J. Procter,
Chem. Rev. 2004, 104, 3371; b) H. B. Kagan, Tetrahedron 2003,
59, 10351; c) P. G. Steel, J. Chem. Soc. Perkin Trans. 1 2001, 2 72 7;
d) A. Krief, A.-M. Laval, Chem. Rev. 1999, 99, 745; e) G. A.
Molander, C. R. Harris, Tetrahedron 1998, 54, 3321; f) G. A.
Molander, C. R. Harris, Chem. Rev. 1996, 96, 307.
[25] As further evidence, the reaction performed in [D8]THF without
an electrophile provided after treatment product 36 without
deuterium incorporation (R1 = H). This indicates that this
compound arises from the protonation of an organosamarium
intermediate or the corresponding enolate.
[4] Neutral hexoses: a) D. MazØas, T. Skrydstrup, O. Doumeix, J.-M.
Beau, Angew. Chem. 1994, 106, 1457; Angew. Chem. Int. Ed.
Engl. 1994, 33, 1383; b) D. MazØas, T. Skrydstrup, J.-M. Beau,
Angew. Chem. 1995, 107, 990; Angew. Chem. Int. Ed. Engl. 1995,
34, 909; c) T. Skrydstrup, D. MazØas, M. Elmouchir, G.
Doisneau, C. Riche, A. Chiaroni, J.-M. Beau, Chem. Eur. J.
1997, 3, 134; d) T. Skrydstrup, O. Jarreton, D. MazØas, D. Urban,
J.-M. Beau, Chem. Eur. J. 1998, 4, 655; e) O. Jarreton, T.
Skrydstrup, J.-M. Beau, Chem. Eur. J. 1999, 5, 430; f) N. Miquel,
G. Doisneau, J.-M. Beau, Angew. Chem. 2000, 112, 4277; Angew.
Chem. Int. Ed. 2000, 39, 4111.
[5] 2-Deoxy-2-acetamido sugars: a) D. Urban, T. Skrydstrup, C.
Riche, A. Chiaroni, J.-M. Beau, Chem. Commun. 1996, 1883;
b) D. Urban, T. Skrydstrup, J.-M. Beau, J. Org. Chem. 1998, 63,
2507; c) L. Andersen, L. M. Mikkelsen, J.-M. Beau, T.
Skrydstrup, Synlett 1998, 1393; d) S. Palmier, B. Vauzeilles, J.-
M. Beau, Org. Biomol. Chem. 2003, 1, 1097.
[6] I. R. Vlahov, P. I. Vlahova, R. J. Linhardt, J. Am. Chem. Soc.
1997, 119, 1480.
[7] a) T. Polat, Y. Du, R. J. Linhardt, Synlett 1998, 1195; b) Y. Du,
R. J. Linhardt, Carbohydr. Res. 1998, 309, 161.
[8] Z. Abdallah, G. Doisneau, J.-M. Beau, Angew. Chem. 2003, 115,
5367; Angew. Chem. Int. Ed. 2003, 42, 5209.
[9] R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber. 1966, 99, 611.
[10] K. Kusuda, J. Inanaga, M. Yamaguchi, Tetrahedron Lett. 1989,
30, 2945.
[11] a) J. Inanaga, J. Katsuki, M. Yamaguchi, Chem. Lett. 1991, 1025;
b) S. Hanessian, C. Girard, J. L. Chiara, Tetrahedron Lett. 1992,
33, 573.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 6016 –6020