600
A. Assalit et al. / Tetrahedron: Asymmetry 20 (2009) 593–601
2. (a) Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000, 100, 3553–3590; (b)
Kwong, H.-L.; Yeung, H.-L.; Yeung, C.-T.; Lee, W.-S.; Lee, C.-S.; Wong, W.-L.
Coord. Chem. Rev. 2007, 251, 2188–2222.
3. (a) Roy, R.; Kim, J. M. Tetrahedron 2003, 59, 3881–3893; (b) Sakai, S.; Sasaki, T. J.
Am. Chem. Soc. 1994, 116, 1587–1588; (c) Sakai, S.; Shigemasa, Y.; Sasaki, T.
Tetrahedron Lett. 1997, 38, 8145–8148.
4. (a) Huang, H.; Chen, H.; Hu, X.; Bai, C.; Zheng, Z. Tetrahedron: Asymmetry 2003,
14, 297–304; (b) Constable, E. C.; Frantz, R.; Housecroft, C. E.; Lacour, J.;
Mahmood, A. Inorg. Chem. 2004, 43, 4817–4819.
5. Gottschaldt, M.; Koth, D.; Müller, D.; Klette, I.; Rau, S.; Görls, H.; Schäfer, B.;
Baum, R. P.; Yano, S. Chem. Eur. J. 2007, 13, 10273–10280.
6. (a) Venema, F.; Baselier, C. M.; van Dienst, E.; Ruel, B. H. M.; Feiters, M. C.;
Engbersen, J. F. J.; Reinhoudt, D. N.; Nolte, R. J. M. Tetrahedron Lett. 1994, 35,
1773–1776; (b) Deschenaux, R.; Greppi, A.; Ruch, T.; Kriemler, H.-P.; Raschdorf,
F.; Ziessel, R. Tetrahedron Lett. 1994, 35, 2165–2168; (c) Bruegger, N.;
Deschenaux, R.; Ruch, T.; Ziessel, R. Tetrahedron Lett. 1992, 33, 3871–3874;
(d) Haider, J. M.; Pikramenou, Z. Eur. J. Inorg. Chem. 2001, 189–194.
7. Shan, B.-Z.; Zhao, Q.; Goswami, N.; Eichhorn, D. M.; Rillema, D. P. Coord. Chem.
Rev. 2001, 211, 117–144.
8. Wang, P.; Zhang, Z.; Yu, B. J. Org. Chem. 2005, 70, 8884–8889.
9. Lee, E.; Melody, N.; McArdle, P.; Cunningham, D. Carbohydr. Res. 1992, 226,
175–178.
10. (a) Garcia, J.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1984, 25, 4841–4844; (b)
Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1986, 27, 4623–4624.
J = 1.6, 2H), 7.98 (dd, J = 7.8, J = 1.6, 2H), 7.44 (t, J = 5.2, 2H), 7.36
(dd, J = 7.8, J = 4.9, 2H), 5.41 (d, J = 5.0, 2H), 4.53 (dd, J = 7.9,
J = 2.3, 2H), 4.26 (dd, J = 5.0, J = 2.3, 2H), 3.98 (dd, J = 1.8, J = 7.9,
2H), 3.86 (m, 2H), 3.51 (ddd, J = 13.7, J = 6.4, J = 5.2, 2H), 3.30
(ddd, J = 13.7, J = 6.4, J = 5.2, 2H), 1.46 (s, 6H), 1.41 (s, 6H), 1.30 (s,
12H).13C NMR: d = 168.5, 156.3, 150.2, 136.6, 132.5, 123.3, 109.7,
109.1, 96.6, 71.7, 71.1, 70.9, 66.0, 40.8, 26.4, 26.3, 25.4, 24.7.
6.17. Typical procedure for electrophilic fluorination
Ligands 7–11 and 24 or 12–16 (0.03 mmol) and copper(II) tri-
flate (0.025 mmol) were premixed in dry dichloromethane, for
2 h, under a nitrogen atmosphere. The b-ketoester 18, 19, or 22
(0.25 mmol) was then added followed by NFSI (0.375 mmol) and
the reaction was monitored by TLC and 19F NMR. At the end of
the reaction, the solvent was removed under vacuum and the prod-
uct was purified by flash chromatography. Chiral HPLC led to two
distinctive peaks, the second one being the major enantiomer for
esters in most cases except for ligand 8, and the first one being
the major for all sugar amide ligands. The absolute configuration
11. (a) Kirk, K. L. Curr. Top. Med. Chem. 2006, 6, 1447–1456; (b), 6th ed.Burger’s
Medicinal Chemistry and Drug Discovery; Abraham, D. J., Ed.; John Wiley & Sons:
New York, 2003; Vols. 1 and 2, (c) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305–
321.
12. Park, B. K.; Kitteringham, N. R.; O’Neill, P. M. Annu. Rev. Pharmacol. Toxicol.
2001, 41, 443–470.
of the major enantiomer was not determined, however, in Ref.26a
,
R,R-Box1-catalysed fluorination of ketoester 22 was found to give
the (+) isomer as major product. By analogy to these results the
(ꢀ) sign is believed to be major enantiomer based on our reference
experiment using (S,S)-Box 1.
13. Smart, B. E. J. Fluorine Chem. 2001, 109, 3–11.
14. (a) Isanbor, C.; O’Hagan, D. J. Fluorine Chem. 2006, 127, 303–319; (b) Kirk, K. L. J.
Fluorine Chem. 2006, 127, 1013–1029; (c) Ismail, F. M. D. J. Fluorine Chem. 2002,
118, 27–33; (d) O’Hagan, D.; Rzepa, H. S. Chem. Commun. 1997, 645–652; (e)
Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1886.
15. (a) Filler, R.; Kobayashi, Y.; Yagulpolskii, L. M. Organofluorine Compounds in
Medicinal Chemistry and Biomedical Applications; Elsevier: Amsterdam, 1993;
(b) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry: Principles
and Commercial Applications; Plenum Press: New-York, 1994; (c) Hiyama, T.
Organofluorine Compounds: Chemistry and Properties; Springer-Verlag: Berlin,
2000. Chapter 5; (d) Becker, A. Inventory of Industrial Fluoro-Biochemicals;
Eyrolles: Paris, 1996; (e) Groß, U.; Rüdiger, S. In Organo-Fluorine Compounds;
Baasner, B., Hagemann, H., Tatlow, J. C., Eds.; Houben-Weyl: Methods of
Organic Chemistry; Thieme: Stuttgart, 1999; Vol. E10a, pp 18–26; (f) Hiyama,
T. Organofluorine Compounds: Chemistry and Properties; Springer-Verlag: Berlin,
2000; (g) Dunitz, J. D. ChemBioChem 2004, 5, 614–621; (h) Biffinger, J. C.; Kim,
H. W.; DiMagno, S. G. ChemBioChem 2004, 5, 622–627.
6.18. Ethyl 2-fluoro-2-benzylacetoacetate 20
Colorless oil. 1H NMR: d = 7.31–7.22 (m, 5H), 4.24 (q, J = 7.1, 2H),
3.45 (dd, J = 25.4, J = 14.8, 1H), 3.39 (dd, J = 25.4, J = 14.8, 1H), 2.15
(d, J = 5.2, 3H), 1.26 (t, J = 7.1). 13C NMR: d = 202.8 (d, JC–F = 29.6),
166.1(d, JC–F = 25.8), 133.5, 130.8 (d, JC–F = 1.1), 128.8, 127.8,
100.4 (d, JC–F = 200.3), 63.1, 40.2 (d, JC–F = 20.3), 26.7, 14.3. 19F
NMR: d = ꢀ165.07 (tq, J = 25.4, J = 5.2). Anal. Calcd for C13H15FO3:
C, 65.53; H, 6.35. Found: C, 65.36; H, 6.59.
16. Dolbier, W. R., Jr. J. Fluorine Chem. 2005, 126, 157–163.
17. Schofield, H. J. Fluorine Chem. 1999, 100, 7–11.
6.19. Benzyl 1-fluoro-2-oxo-cyclopentanecarboxylate 21
18. (a) Chambers, R. Fluorine in Organic Chemistry; Blackwell Publishing: Oxford,
2004; (b)Chemistry of Organic Fluorine Compounds II. A Critical Review; Hudlicky,
M., Pavlath, A. E., Eds.; American Chemical Society: Washington, DC, 1995.
19. (a) Differding, E.; Lang, R. W. Tetrahedron Lett. 1988, 29, 6087–6090; (b)
Differding, E.; Lang, R. W. Helv. Chim. Acta 1989, 72, 1248–1252; (c) Differding,
E.; Ofner, H. Synlett 1991, 187–189.
20. (a) Bobbio, C.; Gouverneur, V. Org. Biomol. Chem. 2006, 4, 2065–2075; (b) Pihko,
P. M. Angew. Chem., Int. Ed. 2006, 45, 544–547; (c) Prakash, G. K. S.; Beier, P.
Angew. Chem., Int. Ed. 2006, 45, 2172–2174.
Yellow oil. 1H NMR: d = 7.35–7.34 (m, 5H), 5.28 (d, J = 12.1, 1H),
5.22 (d, J = 12.1, 1H), 2.62–2.48 (m, 3H), 2.35 (m, 1H), 2.11 (m, 2H).
13C NMR: d = 207.4 (d, JC–F = 16.5), 167.4 (d, JC–F = 27.4), 135.1,
129.11, 129.07, 128.6, 94.8 (d, JC–F = 200.3), 68.2, 36.1, 34.0 (d, JC–
F = 20.8), 18.5 (d, JC–F = 3.3). 19F NMR: d = ꢀ164.4 (t, J = 20.8). Anal.
Calcd for C13H13FO3: C, 66.09; H, 5.55. Found: C, 66.18; H, 5.47.
21. (a) Jensen, B. S. CNS Drug Rev. 2002, 8, 353–360; (b) Young, B. L.; Cooks, R. G.;
Madden, M. C.; Bair, M.; Jia, J.; Aubry, A.-F.; Miller, S. A. J. Pharm. Biomed. Anal.
2007, 43, 1602–1608.
6.20. Benzyl 2-fluoro-1-tetralone-2-carboxylate 23
22. (a) Shibata, N.; Ishimaru, T.; Suzuki, E.; Kirk, K. L. J. Org. Chem. 2003, 68, 2494–
2497; (b) Zoute, L.; Audouard, C.; Plaquevent, J.-C.; Cahard, D. Org. Biomol.
Chem. 2003, 1, 1833–1834.
23. Haffner, C. D.; McDougald, D. L.; Reister, S. M.; Thompson, B. D.; Conlee, C.;
Fang, J.; Bass, J.; Lenhard, J. M.; Croom, D.; Secosky-Chang, M. B.; Tomaszek, T.;
McConn, D.; Wells-Knechtd, K.; Johnson, P. R. Bioorg. Med. Chem. Lett. 2005, 15,
5257–5261.
24. (a) Cahard, D.; Audouard, C.; Plaquevent, J.-C.; Roques, N. Org. Lett. 2000, 2,
3699–3701; (b) Shibata, N.; Suzuki, E.; Takeuchi, Y. J. Am. Chem. Soc. 2000, 122,
10728–10729; (c) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119–6146.
25. (a) Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359–4362; (b)
Hamashima, Y.; Yagi, K.; Takano, H.; Tamás, L.; Sodeoka, M. J. Am. Chem. Soc.
2002, 124, 14530–14531; (c) Bonaccorsi, C.; Althaus, M.; Becker, C.; Togni, A.;
Mezzetti, A. Pure Appl. Chem. 2006, 78, 391–396.
Yellow oil. 1H NMR: d = 8.10 (m, 1H), 7.57 (m, 1H), 7.42–7.26
(m, 7H), 5.33 (d, J = 12.4, 1H), 5.24 (d, J = 12.4, 1H), 3.15 (m, 1H),
3.02 (m, 1H), 2.74 (m, 1H), 2.56 (m, 1H). 13C NMR: d = 188.6 (d,
JC–F = 18.7), 167.3 (d, JC–F = 26.3), 143.2, 135.1, 135.0, 131.0, 129.2,
129.0, 128.92, 128.86, 128.4, 127.7, 93.4 (d, JC–F = 193.7), 67.8,
32.0 (d, JC–F = 22.5), 24.9 (d, JC–F = 7.1). 19F NMR: d = ꢀ164.9 (dd,
J = 22.9, J = 11.5). Anal. Calcd for C18H15FO3: C, 72.47; H, 5.07.
Found: C, 72.86; H, 5.38.
Acknowledgments
26. (a) Ma, J.-A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007–1011; (b)
Shibata, N.; Ishimaru, T.; Nagai, T.; Kohno, J.; Toru, T. Synlett 2004, 1703–1706.
27. (a) Enders, D.; Hüttl, M. R. M. Synlett 2005, 6, 991–993; (b) Marigo, M.;
We thank the CNRS and GSK for their financial support and Dr.
P. Boullanger for nomenclature suggestions.
Fielenbach, D.; Braunton, A.; Kjꢀrsgaard, A.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2005, 44, 3703–3706; (c) Steiner, D. D.; Mase, N.; Barbas, C. F., III Angew.
Chem., Int. Ed. 2005, 44, 3706–3710; (d) Beeson, T. D.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2005, 127, 8826–8828.
References
28. Shibata, N.; Yasui, H.; Nakamura, S.; Toru, T. Synlett 2007, 1153–1157.
29. Handbook of Chemistry and Physics, 76th ed.; CRC Press: Boca Raton, 1995.
30. (a) Rice, C. R.; Robinson, K. J.; Wallis, J. D. Acta Crystallogr. 1993, 49, 1980–1982;
(b) Starova, G. L.; Denisova, A. S.; Dem’yanchuk, E. M. J. Mol. Struct. 2007, 830,
1. (a) Boysen, M. M. K. Chem. Eur. J. 2007, 13, 8648–8659; (b) Diéguez, M.; Claver,
C.; Pàmies, O. Eur. J. Org. Chem. 2007, 4621–4634; (c) Diéguez, M.; Pàmies, O.;
Claver, C. Chem. Rev. 2004, 104, 3189–3216.