136
S. Guizzetti et al.
LETTER
(2) (a) Blaser, H.-U.; Pugin, B.; Spindler, F.; Thommen, M. Acc.
Chem. Res. 2007, 40, 1240; and references cited therein .
See also: (b) Kadyrov, R.; Riermeier, T. H. Angew. Chem.
Int. Ed. 2003, 42, 5472. (c) Li, C.; Villa-Marcos, B.; Xiao, J.
J. Am. Chem. Soc. 2009, 131, 6967.
ratio; running the reaction at lower temperature did not
improve the stereoselectivity (entries 6 and 7, Table 3).
Finally, as further demonstration of the versatility of the
methodology, the addition of trichlorosilane to imine 16,
derived from reaction of 2-methoxyacetophenone and
(R)-1-phenylethylamine, was studied (Scheme 3). The re-
duction at 0 °C after only 12 hours afforded the 1,2-meth-
oxyamino derivative 17 in 71% yield and 91:9
diastereomeric ratio (entry 8, Table 3).14 Also for this
transformation a lower reaction temperature did not mod-
ify significantly the stereochemical result.
(3) Ouellet, S. G.; Walji, A.; MacMillan, D. W. C. Acc. Chem.
Res. 2007, 40, 1327; and references cited therein.
(4) Reviews: (a) Benaglia, M.; Guizzetti, S.; Pignataro, L.
Coord. Chem. Rev. 2008, 252, 492. (b) Denmark, S. E.;
Beutner, G. L. Angew. Chem. Int. Ed. 2008, 47, 1560.
(5) (a) Iwasaki, F.; Onomura, O.; Mishima, K.; Maki, T.;
Matsumura, Y. Tetrahedron Lett. 1999, 40, 7507.
(b) Iwasaki, F.; Onomura, O.; Mishima, K.; Kanematsu, T.;
Maki, T.; Matsumura, Y. Tetrahedron Lett. 2001, 42, 2525.
(6) For two recent contributions about the enantioselective
synthesis of b-amino acids involving the use of trichloro-
silane, see: (a) Malkov, A. V.; Stoncius, S.; Vrankova, K.;
Arndt, M.; Kocovsky, P. Chem. Eur. J. 2008, 14, 8082.
(b) Zheng, H.-J.; Chen, W.-B.; Wu, Z.-J.; Deng, J.-G.; Lin,
W.-Q.; Yuan, W.-C.; Zhang, X.-M. Chem. Eur. J. 2008, 14,
9864; and references cited therein . For a recent contribu-
tion in the field, see: (c) Malkov, A. V.; Figlus, M.; Prestly,
M. R.; Rabami, G.; Cooke, G.; Kocovsky, P. Chem. Eur. J.
2009, 15, 9651.
DMF (6 equiv)
1) CH2Cl2, –20 °C, 12 h
HSiCl3 (3 equiv)
2) NaHCO3
HN
N
(R)-14
(R,R)-15
(7) (a) Guizzetti, S.; Benaglia, M.; Cozzi, F.; Rossi, S.;
Celentano, G. Chirality 2009, 21, 233. (b) Guizzetti, S.;
Benaglia, M. EP 2008/010079, 2008. (c) Guizzetti, S.;
Benaglia, M. EP 07023240.0, 2008. (d) Guizzetti, S.;
Benaglia, M.; Cozzi, F.; Annunziata, R. Tetrahedron 2009,
65, 6354.
DMF (6 equiv)
1) CH2Cl2, 0 °C, 12 h
HSiCl3 (3 equiv)
2) NaHCO3
HN
N
(8) Guizzetti, S.; Benaglia, M.; Rossi, S. Org. Lett. 2009, 11,
2928.
(9) See: Alexakis, A.; Gille, S.; Prian, F.; Rosset, S.; Ditrich, K.
Tetrahedron Lett. 2004, 45, 1449; and references cited
therein.
OMe
OMe
(R)-16
(R,S)-17
(10) By 1H NMR analysis on the crude reaction mixture and then
confirmed after purification only one product was detected;
HPLC analysis showed the presence of the other
Scheme 3 Stereoselective reduction of chiral imines 14 and 16
diastereomer to be <0.5%, see Supporting Information. For
a recent contribution on the analytical aspect, see: Claridge,
T. D. W.; Davies, S. G. M.; Polywka, E. C.; Roberts, P. M.;
Russell, A. J.; Savory, E. D.; Edward, D.; Smith, A. D. Org.
Lett. 2008, 10, 5433.
In conclusion, we have developed a very convenient, low
cost protocol for a highly stereoselective reduction of
ketimines15 bearing a very cheap and removable chiral
auxiliary, promoted by an achiral inexpensive Lewis base.
A very simple experimental procedure allows to obtain
the products often with very high diastereomeric excess.
(11) For the diastereoselective reduction of these chiral substrates
through hydrogenation with different catalytic systems, see:
Nugent, T. C.; El-Shazly, M.; Wachaure, V. N. J. Org.
Chem. 2008, 73, 1297; and references cited therein.
(12) (a) For selective debenzylation reactions, see: Kanai, M.;
Yasumoto, M.; Kuriyama, Y.; Inomiya, K.; Katsuhara, Y.;
Higashiyama, K.; Ishii, A. Org. Lett. 2003, 5, 1007. (b) In
our hands the deprotection required hydrogenation for 12 h
at 25 °C and 9.9 bar, with catalytic amounts of Pd/C.
(13) Wakchaure, V. N.; Mohanty, R. R.; Shaikh, A. J.; Nugent,
T. C. Eur. J. Org. Chem. 2007, 959.
Supporting Information for this article is available online at
characterization of reaction products, 1H NMR spectra, and HPLC
chromatograms on chiral stationary phase of chiral amines.
Acknowledgment
(14) Chen, Z. Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3464.
(15) Typical Experimental Procedure for the Reduction of
Ketimines
This work was supported by MIUR: ‘Nuovi metodi catalitici stereo-
selettivi e sintesi stereoselettiva di molecole funzionali’.
To a stirred solution of the imine (1 mmol/equiv, for the
imine synthesis see Supporting Information) in CH2Cl2 (2
mL), DMF (6 mmol/equiv) was added. The mixture was then
cooled to –50 °C and HSiCl3 (3 mmol/equiv) was added
dropwise by means of a syringe. The reaction was quenched
by the addition of NaHCO3 sat. soln (2 mL). The mixture
was allowed to warm up to r.t. and H2O (2 mL) and CH2Cl2
(5 mL) were added. The organic phase was separated and the
combined organic phases were dried over Na2SO4, filtered,
and concentrated under vacuum to afford the crude product.
References and Notes
(1) Reviews: (a) Dalko, P. I.; Moisan, L. Angew. Chem. Int. Ed.
2004, 43, 5138. (b) Dondoni, A.; Massi, A. Angew. Chem.
Int. Ed. 2008, 47, 4638. (c) Melchiorre, P.; Marigo, M.;
Carlone, A.; Bartoli, G. Angew. Chem. Int. Ed. 2008, 47,
6138.
Synlett 2010, No. 1, 134–136 © Thieme Stuttgart · New York