D. S. Johnson et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2865–2869
2869
R. C.; Cravatt, B. F. Science 2002, 298, 1793; (c) Cravatt, B. F.; Lichtman, A. H.
Curr. Opin. Chem. Biol. 2003, 7, 469; (d) McKinney, M. K.; Cravatt, B. F. Annu. Rev.
Biochem. 2005, 74, 411; (e) Ahn, K.; McKinney, M. K.; Cravatt, B. F. Chem. Rev.
2008, 108, 1687; (f) Cravatt, B. F.; Demarest, K.; Patricelli, M. P.; Bracey, M. H.;
Giang, D. K.; Martin, B. R.; Lichtman, A. H. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
9371; (g) Kathuria, S.; Gaetani, S.; Fegley, D.; Valino, F.; Duranti, A.; Tontini, A.;
Mor, M.; Tarzia, G.; La Rana, G.; Calignano, A.; Giustino, A.; Tattoli, M.; Palmery,
M.; Cuomo, V.; Piomelli, D. Nat. Med. 2003, 9, 76.
25
20
15
10
5
*
*
*
2. (a) Lambert, D. M.; Fowler, C. J. J. Med. Chem. 2005, 48, 5059; (b) Pacher, P.;
Batkai, S.; Kunos, G. Pharmacol. Rev. 2006, 58, 389; (c) Di Marzo, V. Nat. Rev.
Drug Disc. 2008, 7, 438; (d) Seierstad, M.; Breitenbucher, J. G. J. Med. Chem.
2008, 51, 7327.
0
3. (a) Boger, D. L.; Sato, H.; Lerner, A. E.; Hedrick, M. P.; Fecik, R. A.; Miyauchi, H.;
Wilkie, G. D.; Austin, B. J.; Patricelli, M. P.; Cravatt, B. F. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 5044; (b) Boger, D. L.; Miyauchi, H.; Du, W.; Hardouin, C.; Fecik,
R. A.; Cheng, H.; Hwang, I.; Hedrick, M. P.; Leung, D.; Acevedo, O.; Guimaraes, C.
R. W.; Jorgensen, W. L.; Cravatt, B. F. J. Med. Chem. 2005, 48, 1849; (c) Garfunkle,
J.; Ezzili, C.; Rayl, T. J.; Hochstatter, D. G.; Hwang, I.; Boger, D. L. J. Med. Chem.
2008, 51, 4392.
4. (a) Tarzia, G.; Duranti, A.; Tontini, A.; Piersanti, G.; Mor, M.; Rivara, S.; Plazzi, P.
V.; Park, C.; Kathuria, S.; Piomelli, D. J. Med. Chem. 2003, 46, 2352; (b) Mor, M.;
Rivara, S.; Lodola, A.; Plazzi, P. V.; Tarzia, G.; Duranti, A.; Tontini, A.; Piersanti,
G.; Kathuria, S.; Piomelli, D. J. Med. Chem. 2004, 47, 4998; (c) Tarzia, G.; Duranti,
A.; Gatti, G.; Piersanti, G.; Tontini, A.; Rivara, S.; Lodola, A.; Plazzi, P. V.; Mor, M.;
Kathuria, S.; Piomelli, D. Chem. Med. Chem. 2006, 1, 2352.
Naive Vehicle
3
10
30
Naproxen
[Compound 6g] (mg/kg, i.p.)
Figure 7. Anti-hyperalgesic effects of compound 6g (3–30 mg/kg, ip) in the CFA
model of inflammatory pain. Compound 6g produces a dose-dependent reduction
of mechanical allodynia (hyperalgesic) in rats (black bars). The effect of the non-
steroidal anti-inflammatory drug naproxen (10 mg/kg, ip hatched bar) is shown for
comparison. Anti-hyperalgesic responses were determined at 4 h following drug
treatment and were significantly different between compound 6g- and vehicle-
treated groups (p < 0.05). n = 8 rats/group.
5. Abouab-Dellah, A.; Burnier, P.; Hoornaert, C.; Jeunesse, J.; Puech, F. Patent WO
2004/099176, 2004; US 2006/0089344, 2006.
serine hydrolase super family.13d,e Serine hydrolases that show sig-
nificant reductions in FP probe labeling intensity in the presence of
inhibitor are scored as targets of the compound. The selectivity of
compounds 6b, 6g, and 13 was compared to that of URB597, which
6. (a) Ahn, K.; Johnson, D. S.; Fitzgerald, L. R.; Liimatta, M.; Arendse, A.; Stevenson,
T.; Lund, E. T.; Nugent, R. A.; Nomanbhoy, T. K.; Alexander, J. P.; Cravatt, B. F.
Biochemistry 2007, 46, 13019; (b) Mileni, M.; Johnson, D. S.; Wang, Z.; Everdeen,
D.; Liimatta, M.; Pabst, B.; Bhattacharya, K.; Nugent, R. A.; Kamtekar, S.; Cravatt,
B. F.; Ahn, K.; Stevens, R. C. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 12820; (c)
Apodaca, R; Breitenbucher, J. G.; Pattabiraman, K.; Seierstad, M.; Xiao, W.
Patent WO 2006/074025, 2006.
7. (a) Matsumoto, T.; Kori, M.; Miyazaki, J.; Kiyota, Y. Patent WO 2006/054652,
2006; EP 1813606, 2007.; (b) Keith, J. M.; Apodaca, R.; Xiao, W.; Seierstad, M.;
Pattabiraman, K.; Wu, J.; Webb, M.; Karbarz, M. J.; Brown, S.; Wilson, S.; Scott,
B.; Tham, C.-S.; Luo, L.; Palmer, J.; Wennerholm, M.; Chaplan, S.; Breitenbucher,
J. G. Bioorg. Med. Chem. Lett. 2008, 18, 4838; (c) Karbarz, M. J.; Luo, L.; Chang, L.;
Tham, C.-S.; Palmer, J. A.; Wilson, S. J.; Wennerholm, M. L.; Brown, S. M.; Scott,
B. P.; Apodaca, R. L.; Keith, J. M.; Wu, J.; Breitenbucher, J. G.; Chaplan, S. R.;
Webb, M. Anesthesia Analgesia 2009, 108, 316.
8. (a) Thavonekham, B. Synthesis 1997, 1189; (b) Swanson, D. M.; Dubin, A. E.;
Shah, C.; Nasser, N.; Chang, L.; Dax, S. L.; Jetter, M.; Breitenbucher, J. G.; Liu, C.;
Mazur, C.; Lord, B.; Gonzales, L.; Hoey, K.; Rizzolio, M.; Bogenstaetter, M.; Codd,
E. E.; Lee, D. H.; Zhang, S.-P.; Chaplan, S. R.; Carruthers, N. I. J. Med. Chem. 2005,
48, 1857.
9. Matsunaga, N.; Kaku, T.; Itoh, F.; Tanaka, T.; Hara, T.; Miki, H.; Iwasaki, M.;
Aono, T.; Yamaoka, M.; Kusaka, M.; Tasaka, A. Bioorg. Med. Chem. 2004, 12,
2251.
was profiled at 10 and 100 lM. Gel images of soluble proteomes of
mouse liver, mouse kidney, human liver, and human heart and the
membrane proteome of human brain are shown in Figure 6. Con-
sistent with previous reports,6a,14 multiple off-targets were ob-
served in peripheral tissues for URB597 even at 10 lM,
particularly amongst FP-labeled proteins migrating between 55
and 65 kDa. It is noteworthy that URB597, which has been shown
to be highly selective for serine hydrolases in mouse brain proteo-
mes, inhibits at least one additional hydrolase migrating at 55–
60 kDa in the human brain membrane proteome. In contrast, no
off-targets were observed for compounds 6b, 6g, and 13 even when
tested at 100 lM (Fig. 6). Under the assay conditions, compounds
6b, 6g, 13, and URB597 completely inhibited FAAH from both
mouse and human tissues.
10. Ahn, K. Patent WO 2006/085196, 2006.
Next we selected compound 6g (PF-465) to assess its in vivo
efficacy in a rat model of inflammatory pain. Subcutaneous injec-
tion of complete Freund’s adjuvant (CFA) into the plantar surface
of the hind paw produced a significant decrease in mechanical
paw weight threshold (PWT) at 5 days post injection (Fig. 7). Com-
pound 6g dosed at 3, 10 and 30 mg/kg (ip) caused a dose-depen-
11. Copeland, R. A. Enzymes: A Practical Introduction to Structure, Mechanism, and
Data Analysis, 2nd ed.; Wiley-VCH: New York, 2000. pp 318–349.
12. All the hydrogens were added to the protein and each compound was
covalently attached to the sidechain oxygen of Ser241. The protein/ligand
structures were then minimized using the Sybyl forcefield with the backbone
atoms held constant; charges were not used. These minimized structures were
then compared to the PF-750-h/rFAAH crystal structure.
13. (a) Cravatt, B. F.; Wright, A. T.; Kozarich, J. W. Annu. Rev. Biochem. 2008, 77, 383;
(b) Kidd, D.; Liu, Y.; Cravatt, B. F. Biochemistry 2001, 40, 4005; (c) Leung, D.;
Hardouin, C.; Boger, D. L.; Cravatt, B. F. Nat. Biotechnol. 2003, 21, 687; (d)
Patricelli, M. P.; Giang, D. K.; Stamp, L. M.; Burbaum, J. J. Proteomics 2001, 1,
1067; (e) Liu, Y.; Patricelli, M. P.; Cravatt, B. F. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 14694.
14. (a) Alexander, J. P.; Cravatt, B. F. Chem. Biol. 2005, 12, 1179; (b) Zhang, D.; Saraf,
A.; Kolasa, T.; Bhatia, P.; Zheng, G. Z.; Patel, M.; Lannoye, G. S.; Richardson, P.;
Stewart, A.; Rogers, J. C.; Brioni, J. D.; Surowy, C. S. Neuropharmacol. 2007, 52,
1095.
15. The hFAAH (amino acids 32–579) and rFAAH (amino acids 30–579) constructs
were generated as the N-terminal transmembrane-deleted truncated forms
with N-terminal His6 tags, and were expressed in E. coli and purified as
previously described.6b Both hFAAH and rFAAH enzymes used in the present
study had purity greater than 95% based on SDS–PAGE visualized by Coomassie
blue staining. The GDH-coupled FAAH assay was performed for determination
of potencies (kinact/Ki values) of inhibitors in 384-well microplates with a final
dent inhibition of mechanical allodynia with
a minimum
effective dose (MED) of 10 mg/kg. At doses of 10 and 30 mg/kg,
compound 6g inhibited pain responses to an equivalent degree
as the nonsteroidal anti-inflammatory drug naproxen (10 mg/kg,
ip).
In conclusion, we have described a series of benzothiophene
piperazine/piperidine urea FAAH inhibitors that covalently modify
the enzyme’s active site serine nucleophile. Activity-based protein
profiling revealed that these urea inhibitors are highly selective for
FAAH relative to other mammalian serine hydrolases. Furthermore,
in vivo activity was demonstrated in a rat CFA model of inflamma-
tory pain. Additional SAR development of this class of piperazine/
piperidine urea FAAH inhibitors will be reported in due course.
volume of 50 lL. The details on the assay and derivations of the overall
potency, kinact/Ki value, have been described previously.6b In the 384-well
format assay, the kinact/Ki values were generally calculated from the slope,
kinact/[Ki (1 + [S]/Km)], which is obtained from the kobs versus [I] linear lines. The
kinact/Ki values are averages of at least two independent experiments.
References and notes
1. (a) Cravatt, B. F.; Giang, D. K.; Mayfield, S. P.; Boger, D. L.; Lerner, R. A.; Gilula, N.
B. Nature 1996, 384, 83; (b) Bracey, M. A.; Hanson, M. A.; Masuda, K. R.; Stevens,