10.1002/chem.202101242
Chemistry - A European Journal
FULL PAPER
Figure 4. Magnetic WTA-beads for antibody binding assays. A) Workflow for the antibody binding assay: 1) Biotinylation of WTA fragments 4-11; 2) Adsorption on
streptavidin coated M280 Dynabeads; 3) binding of monoclonal antibodies; 4) Alexa 488-Protein G conjugation; 5) Readout of fluorescent beads. B-E) Binding of
monoclonal antibody B) 4461, C) 4624, D) 4497 and E) 6292 to the WTA-functionalized beads.
2017; c) R. Adamo, A. Nilo, B. Castagner, O. Boutureira, F. Berti, G.
J. Bernardes, Chem. Sci. 2013, 4, 2995.
Conclusion
[5]
[6]
F. C. Neuhaus, J. Baddiley, Microbiol. Mol. Biol. Rev. 2003, 67, 686.
S. Sobhanifar, L. J. Worrall, D. T. King, G. A. Wasney, L. Baumann,
R. T. Gale, M. Nosella, E. D. Brown, S. G. Withers, N. C. Strynadka,
PLoS Pathog. 2016, 12, e1006067.
S. Sobhanifar, L. J. Worrall, R. J. Gruninger, G. A. Wasney, M.
Blaukopf, L. Baumann, E. Lameignere, M. Solomonson, E. D.
Brown, S. G. Withers, N. C. Strynadka, Proc. Natl. Acad. Sci. U. S.
A. 2015, 112, E576.
D. Gerlach, Y. Guo, C. De Castro, S. H. Kim, K. Schlatterer, F. F.
Xu, C. Pereira, P. H. Seeberger, S. Ali, J. Codee, W. Sirisarn, B.
Schulte, C. Wolz, J. Larsen, A. Molinaro, B. L. Lee, G. Xia, T. Stehle,
A. Peschel, Nature 2018, 563, 705.
a) W. F. Hogendorf, L. J. Bos, H. S. Overkleeft, J. D. Codee, G. A.
Marel, Bioorg. Med. Chem. 2010, 18, 3668; b) D. van der Es, W. F.
Hogendorf, H. S. Overkleeft, G. A. van der Marel, J. D. Codee,
Chem. Soc. Rev. 2017, 46, 1464; c) D. van der Es, F. Berni, W. F.
J. Hogendorf, N. Meeuwenoord, D. Laverde, A. van Diepen, H. S.
Overkleeft, D. V. Filippov, C. H. Hokke, J. Huebner, G. A. van der
Marel, J. D. C. Codee, Chem. Eur. J. 2018, 24, 4014; d) W. F.
Hogendorf, L. N. Lameijer, T. J. Beenakker, H. S. Overkleeft, D. V.
Filippov, J. D. Codee, G. A. Van der Marel, Org. Lett. 2012, 14, 848;
e) W. F. Hogendorf, A. Kropec, D. V. Filippov, H. S. Overkleeft, J.
Huebner, G. A. van der Marel, J. D. Codee, Carbohydr. Res. 2012,
356, 142.
A. Fekete, P. Hoogerhout, G. Zomer, J. Kubler-Kielb, R.
Schneerson, J. B. Robbins, V. Pozsgay, Carbohydr. Res. 2006, 341,
2037.
Y. C. Jung, J. H. Lee, S. A. Kim, T. Schmidt, W. Lee, B. L. Lee, H.
S. Lee, Org. Lett. 2018, 20, 4449.
R. van Dalen, M. M. Molendijk, S. Ali, K. P. M. van Kessel, P. Aerts,
J. A. G. van Strijp, C. J. C. de Haas, J. Codée, N. M. van Sorge,
Nature 2019, 572, E1.
D. Laverde, D. Wobser, F. Romero-Saavedra, W. Hogendorf, G. van
der Marel, M. Berthold, A. Kropec, J. Codee, J. Huebner, PLoS One
2014, 9, e110953.
J. P. G. Hermans, L. Poot, M. Kloosterman, G. A. van der Marel, C.
A. A. van Boeckel, D. Evenberg, J. T. Poolman, P. Hoogerhout, J.
H. van Boom, Recl. Trav. Chim. Pays-Bas 1987, 106, 498.
I. Figueroa-Perez, A. Stadelmaier, S. Morath, T. Hartung, K. R.
Schmidt, Tetrahedron: Asymmetry 2005, 16, 493.
a) T. Tsuda, S. Nakamura, S. Hashimoto, Tetrahedron 2004, 60,
10711; b) J.-R. Pougny, P. Sinaÿ, Tetrahedron Lett. 1976, 17, 4073;
c) R. R. Schmidt, M. Behrendt, A. Toepfer, Synlett 1990, 11, 694; d)
R. R. Schmidt, E. Rücker, Tetrahedron Lett. 1980, 21, 1421; e) S.
K. Mulani, W. C. Hung, A. B. Ingle, K. S. Shiau, K. K. Mong, Org.
Biomol. Chem. 2014, 12, 1184; f) E. A. Khatuntseva, A. A. Sherman,
Y. E. Tsvetkov, N. E. Nifantiev, Tetrahedron Lett. 2016, 57, 708; g)
A. V. Demchenko, Handbook of Chemical Glycosylation; A. V.
Demchenko, Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
Germany, 2008, pp. 10-11; h) D. van der Es, N. A. Groenia, D.
Laverde, H. S. Overkleeft, J. Huebner, G. A. van der Marel, J. D.
Codee, Bioorg. Med. Chem. 2016, 24, 3893.
We have here described synthetic chemistry to assemble all
currently known glycosylation types of S. aureus RboP WTA. We
have developed stereoselective glycosylation reactions to
generate building blocks that have been used to assemble a-1,4,
b-1,4 and b-1,3-GlcNAc functionalized RboP-WTAs. A strategy
was used employing phosphoramidite chemistry in combination
with DMTr-protected building blocks. This “DNA-type” chemistry
was successfully transposed to an automated solid phase format,
significantly streamlining the assembly of longer WTA fragments.
Detailed spectroscopic analysis of the fragments has revealed
diagnostic signals that can be used as reference for future WTA-
structure elucidation studies. Finally, we have shown the
applicability of the synthetic WTA-fragments in the development
of a binding assay to map binding interactions of anti-WTA
monoclonal antibodies at the molecular level. These interaction
studies have shown that antibodies that recognize b-1,4-GlcNAc
WTA can be cross-reactive with b-1,3-GlcNAc WTA. It is thus
likely that IgG in human serum is also capable of interacting with
both TarS-WTA and TarP-WTA, as described by Van Dalen et al.
[7]
[8]
[9]
[10]
[12]
More detailed binding studies are required to pinpoint the
differences in binding between the two different epitopes and the
(recombinantly expressed) monoclonal antibodies or human sera.
It is expected that raising antibodies against S. aureus TarP-WTA,
or a synthetic conjugate featuring this WTA-type will lead to
specific anti-b-1,3-GlcNAc-WTA antibodies. Alternatively,
structure-guided antibody engineering may open up avenues to
generate selective and tight binding WTA-glycosylation type
specific antibodies. Well-defined WTA fragments are valuable
tools to delineate clear structure-activity relationships and will be
used in the future to characterize antibody binding epitopes and
to probe binding to other receptors, such as C-type lectins and
unravel the mode of action of biosynthesis enzymes at the
molecular level.
[11]
[12]
[13]
[14]
[15]
[16]
Acknowledgements
Simone Nicolardi and Fabrizio Chiodo for MALDI measurements.
Carla de Haas and Piet Aerts for technical assistance with
recombinant antibody production. This work was supported by
Vidi (91713303) and Vici (09150181910001) grants from the
Netherlands Organization for Health Research and Development
(ZonMW) to N.M.v.S.
[17]
[18]
W. Sowa, G. H. S. Thomas, Can. J. Chem. 1966, 44, 836.
R. Fong, K. Kajihara, M. Chen, I. Hotzel, S. Mariathasan, W. L. W.
Hazenbos, P. J. Lupardus, mAbs 2018, 10, 979.
[19]
J.-H. Lee, N.-H. Kim, V. Winstel, K. Kurokawa, J. Larsen, J.-H. An,
A. Khan, M.-Y. Seong, M. J. Lee, P. S. Andersen, A. Peschel,
B.-L. Lee, Infect. Immun. 2015, 83, 4247.
Keywords: ribitol phosphate • automated synthesis • wall
teichoic acids • Gram-positive bacteria • antibodies
References
[1]
[2]
F. D. Lowy, N. Engl. J. Med. 1998, 339, 520.
C. P. Harkins, B. Pichon, M. Doumith, J. Parkhill, H. Westh, A.
Tomasz, H. De Lencastre, S. D. Bentley, A. M. Kearns, M. T. G.
Holden, Genome Biol. 2017, 18, 130.
[3]
[4]
R. S. Daum, B. Spellberg, Clin. Infect. Dis. 2012, 54, 560.
a) A. Fattom, (Nabi Biopharmaceuticals), WO 2007/053176 A2,
2007; b) P.-A. G. Driguez, (Sanofi Pasteur), WO 2017/064190 A1,
8
This article is protected by copyright. All rights reserved.