C O M M U N I C A T I O N S
Table 2. Catalytic Asymmetric 1,4-Additions of Oxindoles 3 to
Nitroalkenes 4 Using the Mn2(OAc)2-Schiff Base 1 Complexa
configurations, and a CIF. This material is available free of charge via
References
(1) Reviews: (a) Dounay, A. B.; Overman, L. E. Chem. ReV. 2003, 103, 2945.
(b) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36. (c)
Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(2) (a) Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman,
L. E.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261,
and references therein. (b) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006,
128, 4590. (c) Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548,
and references therein. (d) Ogawa, S.; Shibata, N.; Inagaki, J.; Nakamura,
S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2007, 46, 8666, and
references therein. (e) Yasui, Y.; Kamisaki, H.; Takemoto, Y. Org. Lett.
2008, 10, 3303. With a chiral auxiliary: (f) Fuji, K.; Kawabata, T.; Ohmori,
T.; Shang, M.; Node, M. Heterocycles 1998, 47, 951.
(3) Other selected examples of catalytic asymmetric synthesis of oxindoles
with quaternary carbon stereocenters: (a) Lee, S.; Hartwig, J. F. J. Org.
Chem. 2001, 66, 3402. (b) Hills, I. D.; Fu, G. C. Angew. Chem., Int. Ed.
2003, 42, 3921. (c) Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc.
2003, 125, 13368. (d) Ku¨ndig, E. P.; Seidel, T. M.; Jia, Y.-x.; Bernardinelli,
G. Angew. Chem., Int. Ed. 2007, 46, 8484. (e) Poulsen, T. B.; Bernardi,
L.; Alema´n, J.; Overgaard, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2007,
129, 441. (f) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2007, 129,
2764. (g) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc.
2007, 129, 12396. (h) Tian, X.; Jiang, K.; Peng, J.; Du, W.; Chen, Y.-C.
Org. Lett. 2008, 10, 3583. (i) Linton, E. C.; Kozlowski, M. C. J. Am. Chem.
Soc. 2008, 130, 16162. (j) Duffey, T. A.; Shaw, S. A.; Vedejs, E. J. Am.
Chem. Soc. 2009, 131, 14. (k) Galzerano, P.; Bencivenni, G.; Pesciaioli,
F.; Mazzanti, A.; Giannichi, B.; Sambri, L.; Bartoli, G.; Melchiorre, P.
Chem.sEur. J. [Online early access]. DOI: 10.1002/chem.200802466.
Published Online: Jan 29, 2009.
(4) Reviews of asymmetric 1,4-addition to nitroalkenes: (a) Berner, O. M.;
Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877. Organocatalysis: (b)
Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701. Metal catalysis: (c)
Christoffers, J.; Koripelly, G.; Rosiak, A.; Ro¨ssle, M. Synthesis 2007, 1279.
(5) (a) Handa, S.; Gnanadesikan, V.; Matsunaga, S.; Shibasaki, M. J. Am. Chem.
Soc. 2007, 129, 4900. (b) Handa, S.; Nagawa, K.; Sohtome, Y.; Matsunaga,
S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230. (c) Chen, Z.;
Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130,
2170. (d) Chen, Z.; Furutachi, M.; Kato, Y.; Matsunaga, S.; Shibasaki, M.
Angew. Chem., Int. Ed. 2009, 48, 2218.
a The reaction was performed in 1.0 M AcOEt at room temperature
(20-25 °C) under an open-air atmosphere with 2 equiv of 3, unless
otherwise noted. b Determined by 1H NMR analysis. c Isolated yield
after purification by column chromatography. d Performed under Ar.
resulted in poor diastereo- and enantioselectivity (entries 4 and 5).
These results indicated that two Mn metal centers are essential for
high stereoselectivity and reactivity. Thus, we speculate that
cooperative functions of two Mn metal centers are important for
the present reaction.10 Further mechanistic studies to clarify the
precise role of two Mn metal centers are ongoing.
(6) Selected examples of related bifunctional bimetallic Schiff base catalysis
in asymmetric synthesis: (a) Annamalai, V.; DiMauro, E. F.; Carroll, P. J.;
Kozlowski, M. C. J. Org. Chem. 2003, 68, 1973, and references therein.
(b) Hirahata, W.; Thomas, R. M.; Lobkovsky, E. B.; Coates, G. W. J. Am.
Chem. Soc. 2008, 130, 17658. (c) Wu, B.; Gallucci, J. C.; Parquette, J. R.;
RajanBabu, T. V. Angew. Chem., Int. Ed. 2009, 48, 1126.
(7) We speculate that the Co2-1 complex optimized for ꢀ-keto esters was not
suitable for N-Boc oxindole 3 because the reacting position of the enolate
derived from 3 is different from that of enolates from ꢀ-keto esters. The
Mn2-1 complex in this work is suitable for oxindole 3 but gave only modest
selectivity for ꢀ-keto esters. No reaction proceeded with N-Bn oxindole or
nonprotected oxindole. 3-Ph-N-Boc oxindole gave poor enantioselectivity.
(8) Mn(III)2(OAc)2-1 was synthesized from Mn(II)(OAc)2 and Schiff base
Table 3. Control Experiments Using Mononuclear Mn(III)(OAc)-
Salen 2a-c and Heterodinuclear Schiff Base 1 Complexes
entry
M1
M2
ligand
time (h)
dr
% yield
% ee
1
2
3
4
5
MnOAc
MnOAc
MnOAc
Cu
none
none
none
MnOAc
MnOAc
2a
2b
2c
1
33
33
33
24
24
1.5:1
4:1
4:1
2:1
2:1
69
65
18
81
95
0
44
5
6
18
1-H4inrefluxingEtOHunderair.ThestructurewasassignedasMn(III)2(OAc)2-
1 on the basis of IR and elemental analysis.
a
Pd
1
(9) The absolute and relative configurations of 5af were determined by single-
crystal X-ray analysis after removal of the Boc group.
a The major product was ent-5aa.
(10) Kinetic studies of the related Co2-1 catalyst in asymmetric 1,4-additions
of ꢀ-keto esters suggested the intramolecular cooperative mechanism (see
ref 5d). For the intermolecular bifunctional mechanism of monometallic
salen complexes, see: Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421, and
references therein.
(11) Preliminary trials with nitroethylene at room temperature gave the product
in 81% ee (not optimized), while use of ꢀ,ꢀ-disubstituted nitroalkenes
resulted in no reaction.
In summary, we have developed a homodinuclear Mn2(OAc)2-
Schiff base 1 complex as a new entry into bimetallic Schiff base
catalysis. Mn2-1 was suitable for 1,4-additions of 3-substituted
oxindoles to ꢀ-aryl, ꢀ-heteroaryl, and ꢀ-alkenyl nitroalkenes. Reactions
using 1-5 mol % of Mn2-1 proceeded at room temperature to give
products in 99-83% yield, 96-85% ee, and >30:1-5:1 dr. Further
studies to expand the electrophile scope are ongoing.11,12
Acknowledgment. This work was supported by Grants-in-Aid
for Scientific Research (S), Scientific Research on Priority Areas
(20037010, Chemistry of Concerto Catalysis, to S.M.), and Young
Scientists (A) from JSPS and MEXT.
(12) During revisions of this manuscript, Barbas and co-workers reported elegant
organocatalytic asymmetric 1,4-additions of oxindoles to nitroalkenes. See:
Bui, T.; Syed, S.; Barbas, C. F., III. J. Am. Chem. Soc. [Online early access].
DOI: 10.1021/ja903520c. Published Online: June 5, 2009.
Supporting Information Available: Experimental procedures,
spectral data for new compounds, determination of relative and absolute
JA903566U
9
J. AM. CHEM. SOC. VOL. 131, NO. 26, 2009 9169