M. L. Chabinyc, R. J. Kline, M. D. McGehee and M. F. Toney,
Nat. Mater., 2006, 5, 328.
continuous film was obtained by spin coating from toluene
solutions. Other solvents like THF, chloroform, chlorobenzene
and dichlorobenzene resulted in poor-connectivity films
observed by optical microscope. Various concentrations ranging
from 0.05 wt% to 0.5 wt% were also tested since it was reported
that generally the solubility and solution concentration is crucial
to the quality of the films.30 The uniform and good-connectivity
film was only obtained from the toluene solution with the highest
concentration of 0.5 wt%. Lower concentrations resulted in
uneven films, distinguishable by eye, or islands of crystalline
materials by optical microscope. Different annealing tempera-
tures from 100 ꢂC to 180 ꢂC, annealing times from 15 to 40 min
and annealing atmospheres, both under vacuum and N2, were
also studied. It was found that higher annealing temperatures
(Tanneal > 120 ꢂC) resulted in poor device performance and there
was no obvious enhancement in device performance through
longer annealing time. Vacuum oven annealing and cooling
down overnight resulted in a better performance, since the
cooling rate played an important role in improving the film
quality. Studies showed that slower cooling rates gave a better
molecular ordering, and hence higher device performance.31
13 (a) D. R. Rutherford, J. K. Stille, C. M. Elliott and V. R. Reichert,
Macromolecules, 1992, 25, 2294; (b) C. Taliani, R. Zamboni,
R. Danieli, P. Ostoja, W. Porzio, R. Lazzaroni and J. L. Bredas,
Phys. Scr., 1989, 40, 781; (c) R. Danieli, C. Taliani, R. Zamboni,
G. Giro, M. Biserni, M. Mastragostino and A. Testoni, Synth.
Met., 1986, 13, 325.
14 (a) H. Tian, J. Shi, D. Yan, L. Wang, Y. Geng and F. Wang, Adv.
Mater., 2006, 18, 2149; (b) S. Mohapatra, B. T. Holmes,
C. R. Newman, C. F. Prendergast, C. D. Frisbie and M. D. Ward,
Adv. Funct. Mater., 2004, 14, 605; (c) M. Mushrush, A. Facchetti,
M. Lefenfeld, H. E. Katz and T. J. Marks, J. Am. Chem. Soc.,
2003, 125, 9414.
15 K. R. Radke, K. Ogawa and S. C. Rasmussen, Org. Lett., 2005, 7,
5253.
16 Y. Wu, Y. Li, S. Gardner and B. S. Ong, J. Am. Chem. Soc., 2005, 127,
614.
17 Y. Sun, Y. Ma, Y. Liu, Y. Lin, Z. Wang, Y. Wang, C. Di, K. Xiao,
X. Chen, W. Qiu, B. Zhang, G. Yu, W. Hu and D. Zhu, Adv.
Funct. Mater., 2006, 16, 426.
18 (a) N. Katsonis, A. Marchenko and D. Fichou, J. Am. Chem. Soc.,
2003, 125, 13682; (b) L. Piot, J. Wu, A. Marchenko, K. Mullen and
D. Fichou, J. Am. Chem. Soc., 2005, 127, 16245; (c) A. Nion,
P. Jiang, A. Popoff and D. Fichou, J. Am. Chem. Soc., 2007,
129, 2450; (d) A. Popoff and D. Fichou, Colloids Surf., B, 2008,
63, 153.
19 (a) P. Keg, A. Lohani, D. Fichou, Y. M. Lam, Y. Wu, B. S. Ong and
S. G. Mhaisalkar, Macromol. Rapid Commun., 2008, 29, 1197; (b)
A. Dell’Aquila, F. Marinelli, J. Tey, P. Keg, Y. M. Lam,
O. L. Kapitanchuk, P. Mastrorilli, C. F. Nobile, A. Marchenko,
D. Fichou, S. G. Mhaisalkar, G. P. Suranna and L. Torsi, J.
Mater. Chem., 2008, 18, 786; (c) E. Mena-Osteritz, Adv. Mater.,
2002, 14, 609.
Acknowledgements
This work was supported by an A*STAR grant (Research Grant
No. 052 117 0032).
20 (a) J. P. Rabe and S. Buchholz, Science, 1991, 253, 424; (b) D. M. Cyr,
B. Venkataraman, G. W. Flynn, A. Black and G. M. Whitesides, J.
Phys. Chem., 1996, 100, 13747.
References
1 (a) K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo and
Y. Kunugi, J. Am. Chem. Soc., 2006, 128, 12604; (b) G. Horowitz
and P. Delannoy, in Handbook of Oligo- and Polythiophenes, ed. D.
Fichou, Wiley-VCH, Weinheim, Germany, 1999; (c) Y. Li, Y. Wu,
P. Liu, M. Birau, H. Pan and B. S. Ong, Adv. Mater., 2006, 18,
3029; (d) M. Mushrush, A. Facchetti, M. Lefenfeld, H. E. Katz and
T. J. Marks, J. Am. Chem. Soc., 2003, 125, 9414.
2 (a) X. Zhang and A. J. Matzger, J. Org. Chem., 2003, 68, 9813; (b)
Z. Bao, Adv. Mater., 2000, 12, 227; (c) G. Barbarella, L. Favaretto,
G. Sotgiu, M. Zambianchi, V. Fattori, M. Cocchi, F. Cacialli,
G. Gigli and R. Cingolani, Adv. Mater., 1999, 11, 1375; (d)
21 (a) M. M. S. Abdel-Mottaleb, G. Gotz, P. Kilickiran, P. Bauerle and
E. Mena-Osteritz, Langmuir, 2006, 22, 1443; (b) R. Azumi, G. Gotz,
T. Debaerdemaeker and P. Bauerle, Chem.–Eur. J., 2000, 6, 735; (c)
R. Azumi, G. Gotz and P. Bauerle, Synth. Met., 1999, 101, 569; (d)
T. Kirschbaum, R. Azumi, E. Mena-Osteritz and P. Bauerle, New
J. Chem., 1999, 241; (e) R. Stecher, B. Gompf, J. S. R. Munter and
F. Effenberger, Adv. Mater., 1999, 11, 927; (f) A. Stabel and
J. P. Rabe, Synth. Met., 1994, 67, 47; (g) P. Bauerle, T. Fischer,
B. Bidlingmeier, A. Stabel and J. P. Rabe, Angew. Chem., Int. Ed.,
1995, 34, 303.
€
U. Mitschke and P. Bauerle, J. Chem. Soc., Perkin Trans. 1, 2001,
22 W. Pisula, Z. Tomovic, C. Simpson, M. Kastler, T. Pakula and
€
740; (e) V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani and
S. Barbanera, Solid State Commun., 2002, 122, 181; (f) K. Ogawa
and S. C. Rasmussen, J. Org. Chem., 2003, 68, 2921.
3 C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura,
N. Yoshimoto, P. Raynal, A. El Kassmi and F. Fages, J. Am.
Chem. Soc., 2005, 127, 16346.
K. Mullen, Chem. Mater., 2005, 17, 4296.
23 M. L. Chabinyc, M. F. Toney, R. J. Kline, I. McCulloch and
M. Heeney, J. Am. Chem. Soc., 2007, 129, 3226.
24 (a) W. Pisula, M. Kastler, D. Wasserfallen, T. Pakula and K. Mullen,
€
J. Am. Chem. Soc., 2004, 126, 8074; (b) W. Pisula, F. Dierschke and
€
K. Mullen, J. Mater. Chem., 2006, 16, 4058; (c) W. Pisula,
4 H. Sirringhaus, N. Tessler, D. S. Thomas, P. J. Brown and
R. H. Friend, Adv. Solid State Phys., 1999, 39, 101, and in the
Merck patent, EP 1 279 689 A2, 2003.
5 J. Nakayama, H. B. Dong, K. Sawada, A. Ishii and S. Kumakura,
Tetrahedron, 1996, 52, 471.
Z. Tomovic, M. Wegner, R. Graf, M. J. Pouderoijen, E. W. Meijer
and A. P. H. J. Schenning, J Mater. Chem., 2008, 18, 2968; (d)
H. Shen, K.-U. Jeong, H. Xiong, M. J. Graham, S. Leng,
J. X. Zheng, H. Huang, M. Guo, F. W. Harris and S. Z. D. Cheng,
Soft Matter, 2006, 2, 232.
6 (a) X. Zhang, M. Kohler and A. J. Matzger, Macromolecules, 2004,
37, 6306; (b) X. Zhang, J. P. Johnson, J. W. Kampf and
A. J. Matzger, Chem. Mater., 2006, 18, 3470.
25 J. L. Hutter and J. Bechhoefer, J. Cryst. Growth., 2000, 217, 332.
26 H. Meng, J. Zheng, A. J. Lovinger, B. C. Wang, P. G. Van Patten and
Z. Bao, Chem. Mater., 2003, 15, 1778.
7 W. H. Tang, L. Ke, L. W. Tan, T. T. Lin, T. Kietzke and Z.-K. Chen,
Macromolecules, 2007, 40, 6164.
27 P. Bauerle, F. Pfau, H. Schlupp, F. Wurthner, K.-U. Gaudl,
M. B. Carot and P. Fischert, J. Chem. Soc., Perkin Trans. 2, 1993, 489.
28 L. S. Fuller, B. Iddon and K. A. Smith, J. Chem. Soc., Perkin Trans. 1,
1997, 3465–3470.
29 S. A. Ponomarenko, S. Kirchmeyer and A. Elschner, Chem. Mater.,
2006, 18, 579–586.
30 C. Reese, M. Roberts, M. Ling and Z. Bao, Mater. Today, 2004, 7,
20–27.
31 N. Zhao, G. A. Botton, S. Zhu, A. Duft, B. S. Ong, Y. Wu and P. Liu,
Macromolecules, 2004, 37, 8307.
8 U. Tokiyoshi and T. Shizuo, J. Appl. Phys., 2007, 101, 054517.
9 E. Lim, B. J. Jung and H. K. Shim, Macromolecules, 2003, 36, 4288.
10 H.-S. Kim, Y.-H. Kim, T.-H. Kim, Y.-Y. Noh, S. Pyo, M. H. Yi,
D.-Y. Kim and S.-K. Kwon, Chem. Mater., 2007, 19, 3561.
11 Y.-Y. Noh, R. Azumi, M. Goto, B.-J. Jung, E. H. Lim, H.-K. Shim,
Y. Yoshida, K. Yase and D.-Y. Kim, Chem. Mater., 2005, 17, 3861.
12 I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald,
M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang,
3456 | J. Mater. Chem., 2009, 19, 3449–3456
This journal is ª The Royal Society of Chemistry 2009