pubs.acs.org/joc
An Efficient Route to 2-Substituted N-(1-Amino-3-methylpyrrol)amides
by Ring-Opening Cyclization of Benzylidene- and
Alkylidenecyclopropylcarbaldehydes with Hydrazides
Xiang-Ying Tang and Min Shi*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry,
Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
Received April 6, 2009
A convenient and efficient synthetic method for the construction of 2,3-disubstituted pyrrolamides in
moderate to good yields is established. The in situ generated water significantly accelerates the
reaction rate. A possible mechanism involving the cascade ring-opening and thermal-induced
rearrangement to produce the five-membered ring is proposed.
Introduction
Methylenecyclopropanes (MCPs) are useful building
blocks in organic synthesis due to their high level of reactivity
derived from ring strain and easy availability.5,6 During the
last 10 years, Lewis acid and transition-metal-catalyzed
reactions involving ring-opening of MCPs to form a variety
of different carbocycles and heterocycles have been exten-
sively investigated.7 Recently, Lautens and co-workers have
studied MgCl2-catalyzed ring expansion of MCP hydrazones
to form a class of isomeric cyclic diazadienes (Scheme 1a).8
The pyrrole ring system is a useful structure in heterocyclic
synthesis and displays a variety of important biological
activities.1 Although the pyrrolamides have broad applica-
tions in medicinal chemistry, only a few synthetic methods
have been developed thus far.2 Most of these methods relied
on the Paal-Knorr condensation of 1,4-dicarbonyl com-
pounds with hydrazine derivatives but in low yields.3 Using
exocyclic azolium ylide or other materials could also afford
pyrrolamides but need multistep transformations.4
(5) For selected reviews on MCPs, see: (a) Lautens, M.; Klute, W.; Tam,
W. Chem. Rev. 1996, 96, 49. (b) de Meijere, A.; Kozhushkov, S. I.;
Khlebnikov, A. F. Top. Curr. Chem. 2000, 207, 89. (c) Nakamura, I.;
Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111. (d) Brandi, A.; Cicchi,
S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. (e) Nakamura, E.;
Yamago, S. Acc. Chem. Res. 2002, 35, 867. (f ) Shao, L. -X.; Shi, M. Curr.
Org. Chem. 2007, 11, 1135–1137.
*To whom correspondence should be addressed. Fax: 86-21-64166128.
(1) (a) Gribble, G. W. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 1996; Vol. 2, p 207.
(b) Jones, R. A. Pyrroles, Part II, The Synthesis, Reactivity and Physical
Properties of Substituted Pyrroles; Wiley: New York, 1992. (c) Effland, R. C.;
Klein, J. T. U.S. Patent 4,546,105, 1985; Chem. Abstr. 1986, 104, 186307. (d)
Kulagowski, J.; Janusz, J.; Leeson, P. D. UK Patent 2,265,372, 1993; Chem.
Abstr. 1993, 120, 134504.
(2) For reviews, see: (a) Cirrincione, G.; Almerico, A. M.; Aiello, E. In
Pyrroles. The Chemistry of Heterocyclic Compounds; Jones, R. A., Ed.; Wiley:
New York, 1992; Vol. 48, Part 2, Chapter 3, pp 315-323. (b) Bean, G. P. In
Pyrroles. The Chemistry of Heterocyclic Compounds; Jones, R. A., Bean, G. P.,
Eds.; Wiley: New York, 1990; Vol. 48, Part 1, Chapter 2, pp 218-219. (c) Jones,
R. A.; Bean, G. P. The Chemistry of Pyrroles; Academic Press: New York, 1977;
pp 384-387.
(3) (a) Paal, C. Ber. Dtsch. Chem. Ges. 1984, 17, 2756. (b) Knorr, L. Ber.
Dtsch. Chem. Ges. 1984, 17, 2863. (c) Christoph, A. Appl. Organometal.
Chem. 1985, 18, 367. (d) Epton, R. Chem. Ind. 1965, 425.
€
(6) (a) Cordero, F. M.; Pisaneschi, F.; Goti, A.; Ollivier, J.; Salaun, J.;
Brandi, A. J. Am. Chem. Soc. 2000, 122, 8075. (b) Nakamura, I.; Oh, B. H.;
Saito, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2001, 40, 1298. (c) Camacho,
D. H.; Nakamura, I.; Saito, S.; Yamamoto, Y. J. Org. Chem. 2001, 66, 270.
€
(d) Notzel, M. W.; Rauch, K.; Labahn, T.; de Meijere, A. Org. Lett. 2002, 4,
€
839. (e) Kozhushkov, S.; Spath, T.; Fiebig, T.; Galland, B.; Ruasse, M. F.;
Xavier, P.; Apeloig, Y.; de Meijere, A. J. Org. Chem. 2002, 67, 4100. (f )
Huang, X.; Zhou, H. Org. Lett. 2002, 4, 4419. (g) Karoyan, P.; Chassaing, G.;
Quancard, J.; Vaissermann, J. J. Org. Chem. 2003, 68, 2256. (h) Krafft, M. E.;
€
Bonaga, L. V. R.; Felts, A. S.; Hirosawa, C.; Kerrigan, S. J. Org. Chem. 2003,
68, 6039. (i) Huang, X.; Chen, W.; Zhou, H. Synlett 2004, 329.
(7) For selected examples on MCPs, see: (a) Hu, B.; Xing, S. Y.; Wang,
Z. W. Org. Lett. 2008, 10, 5481. (b) Shi, M.; Liu, L. P.; Tang, J. Org. Lett.
2006, 8, 4043. (c) Shi, M.; Xu, B.; Huang, J.-W. Org. Lett. 2004, 6, 1175. (d)
Huang, X.; Yang, Y. Org. Lett. 2007, 9, 1667. (e) Lautens, M.; Han, W.; Liu,
J. H. J. Am. Chem. Soc. 2003, 125, 4028.
(4) (a) Butler, R. N.; Cloonan, M. O.; Smith, G. M. ARKIVOC, 2003, vii,
244-254. (b) Batanero, B.; Elinson, M. N.; Barba, E. F. Tetrahedron 2004, 60,
10787.
(8) Scott, M. E.;Bathuel, Y.;Lautens, M. J. Am. Chem. Soc. 2007, 129, 1482.
DOI: 10.1021/jo900730t
r
Published on Web 07/17/2009
J. Org. Chem. 2009, 74, 5983–5986 5983
2009 American Chemical Society