5920
C. Pietraszuk et al. / Journal of Organometallic Chemistry 690 (2005) 5912–5921
(b) PhCl2SiCH@CH(C6H4–Cl-4), isolated by crystal-
4. Conclusions
lisation from CH2Cl2, isolated yield 78%; 1H NMR
(C6D6, d, ppm): 6.30 (d, 1H, J = 18.6 Hz, @CHSi),
7.17 (d, 1H, J = 18.6 Hz, @CH), 6.86 (d, 2H,
J = 9.0 Hz, C6H4Cl), 7.10 (d, 2H, J = 9.0 Hz, C6H4Cl),
7.08–7.14, 7.22–7.35, 7.79–7.85 (m, 5H, Ph); 13C NMR
(C6D6): 120.8 (@CHSi), 149.5 (@CH), 134.8, 129.0,
128.9, 135.8 (C6H4Cl), 132.2, 134.1, 128.7, 132.0 (Ph);
MS: m/z (rel. intensity) of ethoxy derivative: 45 (26),
104 (19), 105 (16), 165 (10), 179 (10), 180 (22), 196
(18), 214 (20), 215 (100), 216 (20), 254 (13), 288 (11),
317 (10), 332 (M+, 11).
(c) Ph2ClSiCH@CH(C6H4–Cl-4), isolated by crystal-
lisation from CH2Cl2, isolated yield 85%; 1H NMR
(C6D6, d, ppm): 6.65 (d, 1H, J = 19.3 Hz, @CHSi),
6.77–6.80 (m, 2H, C6H4Cl), 6.97–7.03 (m, 2H,
C6H4Cl), 7.01 (d, 1H, J = 19.3 Hz, @CH), 7.15–7.23,
(m, 6H, Ph), 7.79–7.84 (m, 4H, Ph); 13C NMR (C6D6):
125.3 (@CHSi), 128.3, 128.4, 128.9, 130.4, 134.5,
135.3, 136.1, 136.4 (C6H4Cl, Ph) 147.5 (@CH); MS:
m/z (rel. intensity) of ethoxy derivative: 45 (73), 50 (33),
51 (47), 53 (14), 63 (13), 73 (11), 74 (10), 75 (24), 76
(11), 77 (15), 78 (50), 79 (16), 101 (10), 102 (24), 103
(26), 104 (38), 105 (100), 106 (62), 107 (10), 123 (22),
149 (17), 150 (20), 151 (12), 152 (12), 157 (15), 165
(15), 178 (12), 179 (48), 180 (41), 181 (31), 182 (25),
183 (16), 184 (30), 185 (15), 200 (13), 208 (12), 209
(16), 215 (14), 228 (28), 242 (20), 243 (28), 244 (21),
245 (11), 253 (38), 254 (13), 286 (10), 287 (43), 288
(26), 289 (19), 319 (18), 320 (20), 321 (38), 322 (13),
323 (11), 365(M+, 71), 366 (23), 367 (16).
A variety of vinylsilanes have been tested in equi-
molar and catalytic reactions in the presence of
Grubbs catalysts. Pronounced influence of the proper-
ties of substituents at silicon on the reactivity of vinyl-
silanes in metathesis was demonstrated. Chemo- and
stereoselective course of cross-metathesis of vinylsil-
anes with styrenes, 1-alkenes and numerous allyl deriv-
atives was indicated. In optimised conditions the
products required were synthesised with high yields
and selectivities. The carbene mechanism of the reac-
tion was confirmed. The reaction was proved to be a
valuable method for synthesis of unsaturated organo-
silicon derivatives.
Acknowledgements
We thank the European Commission (Contract Nos.
ICA1-CT-2002-70001 and ICA1-CT-2002-70002) for
the financial support of this investigation.
References
[1] (a) T.H. Chan, I. Fleming, Synthesis (1979) 761;
(b) W.P. Weber, Silicon Reagents for Organic Synthesis, Springer,
Berlin, 1983 (Chapter 7);
(c) E.W. Colvin, Silicon Reagents in Organic Synthesis, Academic
Press, London, 1988 (Chapter 3);
(d) T.-Y. Luh, S.-T. Liu, in: Z. Rappoport, Y. Apeloig (Eds.),
The Chemistry of Organosilicon Compounds, Wiley, Chichester,
1998 (Chapter 30).
(d) Ph(OEt)2SiCH@CH(C6H4–Cl-4) collected frac-
tion 204–207 ꢁC/1 mmHg, isolated yield 75%; 1H
NMR (C6D6, d, ppm): 1.18 (t, 6H, J = 6.8 Hz,
OCH2CH3), 3.81 (q, 4H, J = 6.8 Hz, OCH2CH3), 6.33
(d, 1H, J = 19.2 Hz, @CHSi), 7.12 (d, 1H,
J = 19.2 Hz, @CH), 6.88–7.05 (m, 4H, C6H4Cl), 7.26–
7.34 (m, 3H, Ph), 7.86–7.92 (m, 2H, Ph); 13C NMR
(C6D6): 18.9 (OCH2CH3), 59.1 (OCH2CH3), 122.6
(@CHPh), 147.6 (@CH), 128.3, 128.4, 128.9, 130.6,
134.0, 134.6, 135.2, 136.6 (C6H4Cl, Ph); MS: m/z (rel.
intensity): 45 (17), 104 (12), 105 (13), 165 (10), 178
(11), 179 (19), 195 (17), 214 (100), 215 (45), 216 (44),
217 (16), 254 (18), 255 (15), 288 (10), 317 (16), 332
(M+, 16).
(e) PhF2SiCH@CHPh, isolated by column chroma-
tography, isolated yield 80%; 1H NMR (C6D6, d,
ppm): 6.29 (dt, 1H, J = 19.5 Hz, J = 3.0 Hz, @CHSi),
7.37 (d, 1H, J = 19.5 Hz, @CHPh), 7.10–7.31, 7.41–
7.43, 7.72–7.78, 7.92–7.98 (m, 10H, Ph); 13C NMR
(C6D6): 115.2 (@CHSi), 152.8 (@CHPh), 128.9, 134.5,
128.6, 132.2 (SiPh), 136.8, 127.5, 128.6, 129.9 (Ph); 19F
NMR (C6D6): ꢀ140.3; MS: m/z (rel. intensity): 102
(9), 103 (7), 165 (9), 178 (6), 179 (10), 180 (24),
181 (22), 227 (20), 228 (15), 245 (8), 246 (M+, 100),
247 (21).
[2] For recent reviews on the use of silyl olefins in cross-coupling
reactions see: (a) S.E. Denmark, R.F. Sweis, Organosilicon
compounds, in: A. de Meijere, F. Diederich (Eds.), Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Wein-
heim, 2004 (Chapter 4);
(b) S.E. Denmark, M.H. Ober, Aldrichim. Acta 36 (2003)
75.
[3] (a) Hydrosilylation of silylacetylenes B. Marciniec (Ed.), Com-
prehensive Handbook on Hydrosilylation, Pergamon Press,
Oxford, 1992 (Chapter 5.4);
(b) I. Ojima, Z. Li, J. Zhu, in: Z. Rappoport, Y. Apeloig (Eds.),
The Chemistry of Organic Silicon Compounds, vol. 2, Wiley,
Chichester, 1998 (Chapter 29).
[4] (a) L. Hevesi, Vinyl and arylsilicon, germanium and boron
compounds, in: A.R. Katritzky, O. Meth-Cohn, C.W. Rees
(Eds.), Comprehensive Organic Functional Group Transforma-
tions I, Elsevier Science, Oxford, 1995 (Chapter 2.18);
(b) B. Marciniec, C. Pietraszuk, I. Kownacki, M. Zaidlewicz,
Vinyl- and arylsilicon, germanium and boron compounds, in: E.
Katritzky, R.J.K. Taylor (Eds.), Comprehensive Organic Func-
tional Group Transformations II, Elsevier, Amsterdam, 2005
(Chapter 2.18).
[5] (a) B. Marciniec, C. Pietraszuk, Metathesis of silicon-containing
olefins, in: R.H. Grubbs (Ed.), Handbook of Metathesis, Wiley-
VCH, Weinheim, 2003 (Chapter 2.13);
(b) B. Marciniec, C. Pietraszuk, Curr. Org. Chem. 7 (2003)
691.