M. Hussain et al. / Tetrahedron Letters 50 (2009) 3929–3932
3931
CO2R
Br
OMe
OMe
RO2C
i
Br
Br
Br
CO2R
1st attack
Br
O
11
O
O
CO2R
2b
Bach and Bartels (ref. 17), Kumada coupling
7a (R = nBu): 74%
7b (R = tBu): 77%
3b,e
ii
3e
1st attack
CO2R
RO2C
RO2C
Br
Br
CO2tBu
CO2R
CO2R
CO2R
RO2C
O
O
O
F
+
This work
iii
Chart 3. Regioselective reactions of 2b.
CO2R
8
CO2R
In conclusion, 2,3-dialkenylbenzofurans and functionalized
dibenzofurans were prepared based on domino ’twofold Heck/6
p-
O
electrocyclization’ reactions of 2,3-di- and 2,3,5-tribromobenzofu-
ran. The first attack of Pd(0) occurs at carbon C-2 which results in
a dramatic increase of the reactivity of C-3. Therefore, the Heck reac-
tion of 2,3-dibromobenzofuran proceeds with low regioselectivity.
9 (R = tBu): 71%
(based on 2b)
Scheme 4. Synthesis of 7a, b and 9. Reagents and conditions: (i) Pd(OAc)2 (5 mol %),
SPhos (10 mol %), NEt3 (8.0 equiv), DMF, 70 °C, 12 h; (ii) Pd(OAc)2 (5 mol %), SPhos
(10 mol %), NEt3, DMF, 100 °C, 48 h (isomeric ratio: 2:1, assignment arbitrary); (iii)
Pd/C (10 mol %), xylene, reflux, 48 h.
Acknowledgements
Financial support by State of Pakistan (H.E.C. scholarship for
M.H.), by the State of Mecklenburg-Vorpommern (scholarship for
M.H.) and by the State of Vietnam (M.O.E.T. scholarship N.T.H.) is
gratefully acknowledged.
acrylate 3e, carried out at 100 °C, afforded 8 as a mixture of two
isomers. Heating of a xylene solution of crude 8 in the presence
of Pd/C afforded the 5-alkenyldibenzofuran 9 in 71% yield. The
Heck reaction of 2b with acrylates 3b, e, carried out at >120 °C,
mainly resulted in the formation of the hydrogenated products
10a and 10b which were isolated as single isomers (Chart 2). How-
ever, the exact structure (isomer D or E) could not be unambigu-
ously assigned.
Bach and Bartels reported that the Kumada coupling of 2-aryl-
3,5-dibromobenzofuran 11, derived from 2b, occurs at carbon
atom C-5 (Chart 3).17 We have found that the Heck reaction of
2b with 2 equiv of acrylate 3e resulted in functionalization of car-
bon atoms C-2 and C-3 and in reduction of C-5 to give 4e. This re-
sult can be explained by the following assumption which has not
yet been experimentally proven: the first reaction of 3e with 2b oc-
curs at position C-2 to give intermediate F (Chart 3). The reactivity
of carbon C-3 is increased by the neighbourhood effect of the (tert-
butoxycarbonyl)alkenyl substituent located at carbon C-2 (vide su-
pra). Therefore, the second attack occurs at carbon C-3 rather than
at C-5.
References and notes
1. (a) Miyata, O.; Takeda, N.; Morikami, Y.; Naito, T. Org. Biomol. Chem. 2003, 1,
254; (b) Xie, X.; Chen, B.; Lu, J.; Han, J.; She, X.; Pan, X. Tetrahedron Lett. 2004,
45, 6235; (c) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004,
43, 6144; (d) Hagiwara, H.; Sato, K.; Nishino, D.; Hoshi, T.; Suzuki, T.; Ando, M.
J. Chem. Soc., Perkin Trans. 1 2001, 2946; Review: (e) Butin, A. V.; Gutnow, A. V.;
Abaev, V. T.; Krapivin, G. D. Molecules 1999, 4, 52; (f) Fuerst, D. E.; Stoltz, B. M.;
Wood, J. L. Org. Lett. 2000, 22, 3521; (g) Schneider, B. Phytochemistry 2003, 64,
459; (h) Katritzky, A. R.; Kirichenkok, K.; Ji, Y.; Steel, P. J.; Karelson, M. ARKIVOC
2003, vi, 49.
2. (a) Wendt, B.; Ha, H. R.; Hesse, M. Helv. Chim. Acta 2002, 85, 2990; (b) Carlsson,
B.; Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med.
Chem. 2002, 45, 623; and references cited therein (c) Kwiecien, H.; Baumann, E.
J. Heterocycl. Chem. 1997, 1587; (d) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc.
1984, 106, 4218; (e) Matyus, P.; Varga, I.; Rettegi, T.; Simay, A.; Kallay, N.;
Karolyhazy, L.; Kocsis, A.; Varro, A.; Penzes, I.; Papp, J. G. Curr. Med. Chem. 2004,
1, 61; (f) Wong, H. N. C.; Pei, Yu; Yick, C. Y. Pure Appl. Chem. 1999, 71, 1041.
3. Longicaudatin: (a) Joshi, A. S.; Li, X.-C.; Nimrod, A. C.; ElSohly, H. N.; Walker, L.
A.; Clark, A. M. Planta Med. 2001, 67, 186; For related natural products, see: (b)
Sigstad, E.; Catalan, C. A. N.; Diaz, J. G.; Herz, W. Phytochemistry 1993, 33, 165;
(c) Drewes, S. E.; Hudson, N. A.; Bates, R. B. J. Chem. Soc., Perkin Trans.1 1987,
2809.
4. Sessiliflorol A: (a) Chan, J. A.; Shultis, E. A.; Carr, S. A.; DeBrosse, C. W.;
Eggleston, D. S. J. Org. Chem. 1989, 54, 2098; Sessiliflorol B: (b) Marston, A.;
Zagorski, M. G.; Hostettmann, K. Helv. Chim. Acta 1988, 71, 1210; (c) Drewes, S.
E.; Hudson, N. A.; Bates, R. B.; Linz, G. S. Tetrahedron Lett. 1984, 25, 105;
Flemistrictin E: (d) Subrahmanyam, K.; Rao, J. M.; Vemuri, V. S. S.; Babu, S. S.;
Roy, C. P.; Rao, K. V. J. Ind. J. Chem., Sect B 1982, 21, 895; Tovophenone C: (e) Seo,
E.-K.; Wall, M. E.; Wani, M. C.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R.;
Kinghorn, A. D. Phytochemistry 1999, 52, 669; Vismiaguianone C: (f) Seo, E.-K.;
Wani, M. C.; Wall, M. E.; Navarro, H.; Mukherjee, R.; Farnsworth, N. R.;
Kinghorn, A. D. Phytochemistry 2000, 55, 35; Piperaduncin B: (g) Joshi, A. S.; Li,
X.-C.; Nimrod, A. C.; ElSohly, H. N.; Walker, L. A.; Clark, A. M. Planta Med. 2001,
67, 186; See also: (h) Bohlmann, F.; Zdero, C. Chem. Ber. 1976, 109, 1436.
5. (a) Kokubun, T.; Harborne, J. B. Phytochemistry 1995, 40, 1649; (b) Burden, R. S.;
Kemp, M. S.; Wiltshire, C. W.; Owen, J. D. J. Chem. Soc., Perkin Trans. 1 1984,
1445.
CO2R
CO2R
RO2C
RO2C
O
O
D
E
CO2R
CO2R
6. (a) Kobayashi, A.; Takemura, A.; Koshimizu, K.; Nagano, H.; Kawazu, K. Agric.
Biol. Chem. 1982, 46, 585; (b) Ma, B.-J.; Liu, J.-K. Z. Naturforsch. B 2005, 60, 565;
(c) Takahashi, A.; Kudo, R.; Kusano, G.; Nozoe, S. Chem. Pharm. Bull. 1992, 40,
3194; (d) Xie, C.; Koshino, H.; Esumi, Y.; Onose, J.-i.; Yoshikawa, K.; Abe, N.
Bioorg. Med. Chem. Lett. 2006, 16, 5424.
10a,b (R = nBu, tBu)
Chart 2. Products formed at temperatures higher than 120 °C.