reactions with aldehydes,5 cross-coupling reactions,6 and
metal-mediated additions across alkynes.7 Vinyl oxazolidi-
nones are electron-rich alkenes and react readily with
electron-deficient reagents such as oxidants,8 dihalides,9
metallocarbenes,4,10 and dicarbonyl compounds.11 The facile
access and electron wealth of these compounds suggested
that they would be excellent precursors to R,ꢀ-unsaturated
acyliminium ions upon oxidative carbon-hydrogen bond
activation.12 In this manuscript we demonstrate that vinyl
oxazolidinones react readily with DDQ to form electrophiles
that undergo 1,4-addition reactions with appended nucleo-
philes to form cyclohexane structures. The reactions proceed
with good levels of diastereocontrol when tertiary carbons
are formed. 1,3-Diketones can be used directly as nucleo-
philes in this process, obviating the need to preform the
nucleophile.
could form the reaction between cyclization products and
DDQ. While exposing substrate 6 to DDQ resulted in
substantial amounts of overoxidation, adding LiClO4 (15 mol
%) to the reaction led to the formation of cyclohexanone 7
in 76% yield in 1 h (Scheme 3). Quaternary carbons can
Scheme 3. Carbon-Carbon Bond Formation
We chose to utilize the hydroxyl group as a nucleophile
in initial studies (Scheme 2). Branching was also incorporated
Scheme 2
.
Allylic Carbon-Hydrogen Bond Activation from
Vinyl Oxazolidinones
also be prepared through carbon-carbon bond formation,
as illustrated by the conversion of 8 to 9. This reaction
proceeded to completion within 1 h to provide the desired
product in 74% yield. In contrast allylic oxazolidinone 10,
which lacks heteroatom substitution on the alkene, was inert
under the reaction conditions, thereby demonstrating the
kinetic benefit of utilizing substrates with electron-rich
alkenes in these reactions.
We prepared several substrates to explore the scope of
the process, the capacity to effect diastereoselective cycliza-
tion reactions, and the potential for expanding the scope of
(6) (a) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett.
2003, 5, 3667. (b) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809. (c)
Brice, J. L.; Meerdink, J. E.; Stahl, S. S. Org. Lett. 2004, 6, 1845. (d)
Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109.
(7) Goossen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem., Int. Ed.
2005, 44, 4042.
at the allylic position of the vinyl oxazolidinone to prevent
product oxidation. Exposing 1 to DDQ in 1,2-dichloroethane
(DCE) resulted in the formation of tetrahydropyran 3 in 98%
yield after 20 min. This process proceeded through the
formation of R,ꢀ-unsaturated acyliminium ion 2 followed
by an intramolecular 1,4-addition reaction. Secondary alcohol
4 cyclized to form tetrahydropyran 5 at -30 °C in 85% yield
with modest diastereocontrol as expected on the basis of the
steric similarity between methyl and vinyl groups. Diaste-
reocontrol was somewhat higher when this reaction was
conducted in toluene rather than dichloroethane.
(8) (a) Xiong, H.; Hsung, R. P.; Shen, L.; Hahn, J. M. Tetrahedron Lett.
2002, 43, 4449. (b) Adam, W.; Bosio, S. G.; Wolff, B. T. Org. Lett. 2003,
5, 819. (c) Sivaguru, J.; Saito, H.; Poon, T.; Omonuwa, T.; Franz, R.;
Jockusch, S.; Hooper, C.; Inoue, Y.; Adam, W.; Turro, N. J. Org. Lett.
2005, 7, 2089. (d) Aciro, C.; Davies, S. G.; Garner, A. C.; Ishii, Y.; Key,
M.-S.; Ling, K. B.; Prasad, R. S.; Roberts, P. M.; Rodriguez-Solla, H.;
O’Leary-Steele, C.; Russel, A. J.; Sanganee, H. J.; Savory, E. D.; Smith,
A. D.; Thomson, J. E. Tetrahedron 2008, 64, 9320.
(9) Ko, C.; Hsung, R. P.; Al-Rashid, Z. F.; Feltenberger, J. B.; Lu, T.;
Yang, J.-H.; Wei, Y.; Zificsak, C. A. Org. Lett. 2007, 9, 4459.
(10) Lu, T.; Song, Z.; Hsung, R. P. Org. Lett. 2008, 10, 541.
(11) Gohier, F.; Bouhadjera, K.; Faye, D.; Gaulon, C.; Maisonneuve,
V.; Dujardin, G.; Dhal, R. Org. Lett. 2007, 9, 211.
(12) For related examples, see: (a) Magnus, P.; Lacour, J. J. Am. Chem.
Soc. 1992, 114, 767. (b) Evans, P. A.; Longmire, J. M.; Modi, D. P.
Tetrahedron Lett. 1995, 36, 3985. (c) Magnus, P.; Lacour, J.; Evans, P. A.;
Rigollier, P.; Tobler, H. J. Am. Chem. Soc. 1998, 120, 12486.
(13) (a) Seiders, J. R.; Wang, L.; Floreancig, P. E. J. Am. Chem. Soc.
2003, 125, 2406. (b) Wang, L.; Seiders, J. R.; Floreancig, P. E. J. Am.
Chem. Soc. 2004, 126, 12596. (c) Jung, H. H.; Seiders, J. R.; Floreancig,
P. E. Angew. Chem., Int. Ed. 2007, 46, 8464. For the initial report of using
enol acetates as latent ketone enolates, see: (d) Mukaiyama, T.; Izawa, T.;
Saigo, K. Chem. Lett. 1974, 323.
Our initial studies in applying this approach for carbon-
carbon bond formation focused on the use of enol acetate
nucleophiles. These easily handled and readily accessible
moieties are excellent latent enolates in reactions that proceed
through oxidatively generated carbocations.13 We postulated
that the ketones that arise from these reactions would
suppress overoxidation by destabilizing carbocations that
Org. Lett., Vol. 11, No. 14, 2009
3153