April 2009
395
137.1, 179.9, 180.0. IR (CHCl3) cmꢀ1: 3302, 3150, 2225, 1510. FAB-MS
m/z: 443 (MꢃH)ꢃ.
washed with brine, dried over MgSO4, and evaporated in vacuo. The residue
was purified by alumina column chromatography (EtOAc) to give amine 7
(930 mg, 89% for two steps), as a colorless solid. 1H-NMR (CD3OD) d: 4.38
(2H, s), 7.40—7.43 (3H, m), 7.45—7.54 (3H, m), 7.57—7.67 (3H, m).
Thiourea (8): Under argon atmosphere, to a solution of amine 7 (440 mg,
2.12 mmol) in acetone (5 ml) was added dropwise phenyl isothiocyanate
(0.25 ml, 2.1 mmol) at room temperature. After being stirred under reflux for
24 h, the reaction mixture was evaporated under reduced pressure, and the
residue was purified by silica gel column chromatography (hexane–EtOAc)
Carbodiimide (2): Carbodiimide 2 was prepared from 12 (315 mg,
0.711 mmol) in 67% yield, by a procedure similar to that employed for com-
pound 1. 1H-NMR (CDCl3) d: 1.26—1.83 (6H, m), 3.60 (1H, m), 3.94
(1/2H, t, Jꢂ7.8 Hz), 4.13 (1/2H, t, Jꢂ7.8 Hz), 4.78 (1/2H, m), 5.33 (1/2H,
m), 6.12 (1/2H, s), 6.17 (1/2H, s), 7.14—7.29 (11H, m), 7.44 (1H, ddd,
Jꢂ7.6, 6.7, 1.0 Hz), 7.45 (1H, dd, Jꢂ6.7, 1.0 Hz), 7.74 (1/2H, dd, Jꢂ7.6,
1.0 Hz), 7.82 (1/2H, dd, Jꢂ7.6, 1.0 Hz). 13C-NMR (CDCl3) d: 18.8, 19.1,
25.1, 25.3, 30.2, 30.7, 61.8, 62.0, 63.0, 64.2, 67.9, 71.6, 85.8, 86.6, 86.8,
87.9, 95.3, 96.8, 122.6, 122.8, 122.9, 124.2, 125.0, 125.4, 125.5, 125.9,
128.1, 128.1, 128.2, 128.3, 128.5, 128.7, 129.1, 129.2, 129.3, 129.4, 130.0,
1
to give thiourea 8 (501 mg, 69%) as a colorless solid. H-NMR (CDCl3) d:
5.04 (2H, s), 6.78 (1H, s), 7.06 (1H, ddd, Jꢂ7.8, 7.8, 1.0 Hz), 7.13—7.20
(4H, m), 7.23—7.31 (5H, m), 7.35—7.37 (2H, m), 7.45 (1H, dd, Jꢂ7.3,
1.0 Hz), 7.50 (1H, dd, Jꢂ7.3, 1.0 Hz), 8.77 (1H, s). 13C-NMR (CDCl3) d:
47.9, 86.8, 97.4, 122.2, 122.3, 124.7, 127.6, 128.2, 128.4, 128.5, 129.0,
129.8, 131.4, 132.1, 135.9, 138.8, 180.0. FAB-MS m/z: 343 (MꢃH)ꢃ.
Carbodiimide (1): At 0 °C under argon atmosphere, to a solution of
thiourea 8 (241 mg, 0.704 mmol), triethylamine (0.30 ml, 2.1 mmol), and 4-
dimethylamino pyridine (DMAP, 3 mg, 0.03 mmol) in dichloromethane
(7 ml) was added dropwise methanesulfonyl chloride (0.11 ml, 1.4 mmol).
After being stirred for 15 min at 0 °C, the mixture was filtered through a pad
of silica gel and the filtrate was concentrated in vacuo. The residue was puri-
fied by alumina column chromatography (hexane–EtOAc) to give carbodi-
130.5, 130.9, 131.8, 131.8, 136.0, 136.5, 138.1, 138.3. IR (CHCl3) cmꢀ1
:
2248, 2144. FAB-MS m/z: 409 (MꢃH)ꢃ.
Thermal Cycloaromatization of Carbodiimide
2 11-Phenyl-
dibenzo[b,g][1,8]naphthyridine (14): A solution of carbodiimide 2 (87 mg,
0.21 mmol) in toluene (5 ml) was stirred at 50 °C for 5 h under argon atmo-
sphere. After being cooled to room temperature, the reaction solution was
concentrated under reduced pressure. The residue was purified by alumina
column chromatography (hexane–EtOAc) to give benzonaphthyridine deriv-
1
ative 14 (67 mg, 77%) as a red solid. H-NMR (CDCl3) d: 7.41 (1H, ddd,
Jꢂ8.8, 6.6, 1.1 Hz), 7.46 (1H, ddd, Jꢂ8.5, 6.6, 0.7 Hz), 7.53—7.56 (2H, m),
7.69—7.70 (3H, m), 7.75 (1H, dd, Jꢂ8.8, 1.1 Hz), 7.80 (1H, ddd, J ꢂ8.8,
6.6, 1.1 Hz), 7.81 (1H, ddd, Jꢂ9.2, 6.6, 1.1 Hz), 7.86 (1H, dd, Jꢂ8.5,
1.1 Hz), 8.35 (1H, dd, Jꢂ9.2, 0.7 Hz), 8.39 (1H, dd, Jꢂ8.8, 1.1 Hz), 8.77
(1H, s). 13C-NMR (CDCl3) d: 119.1, 124.7, 125.8, 125.9, 126.4, 126.8,
128.5, 128.7, 128.9, 130.0, 130.5, 130.7, 131.6, 132.0, 135.2, 137.7, 149.9,
152.7, 152.9, 152.9. IR (CHCl3) cmꢀ1: 1580. UV lmax (CH2Cl2) nm (log e):
275 (5.46). FAB-MS m/z: 307 (MꢃH)ꢃ.
1
imide 1 (182 mg, 84%) as a colorless solid. H-NMR (CDCl3) d: 4.78 (2H,
s), 6.99—7.04 (3H, m), 7.16 (2H, dd, Jꢂ7.3, 1.0 Hz), 7.25—7.35 (5H, m),
7.46—7.55 (4H, m). 13C-NMR (CDCl3) d: 49.1, 86.5, 94.5, 121.9, 122.7,
123.7, 124.7, 127.7, 127.8, 128.2, 128.4, 128.7, 129.1, 131.5, 132.2, 137.1,
139.2, 139.8. IR (CHCl3) cmꢀ1: 2103. FAB-MS m/z: 309 (MꢃH)ꢃ.
Synthesis of Carbodiimide 2 Alcohol (10): To a solution of 2-
aminobenzylalcohol 9 (1.80 g, 15.0 mmol) in dichloromethane (75 ml) was
added manganese(II) oxide (16 g, 0.59 mmol) at 0 °C. After being stirred
vigorously at 0 °C for 1 h, the suspension was filtered, and the filtrate was
concentrated in vacuo to give the corresponding aldehyde. On the other
hand, in another apparatus, under argon atmosphere, to a solution of ethynyl
benzene (4.1 ml, 38 mmol) in THF (100 ml) was added ethyl magnesium
bromide (1 M in THF, 33 ml, 33 mmol) at 0 °C. The reaction mixture was
stirred at 0 °C for 1 h to give phenylethynyl magnesium bromide solution. At
0 °C, under argon atmosphere, to the above solution of Grignard reagent was
added dropwise the solution of aldehyde in THF (100 ml). After being
stirred at 0 °C for 30 min, the reaction was quenched with saturated aq.
NH4Cl and diluted with EtOAc. The organic layer was separated, washed
with brine, dried over MgSO4, and evaporated in vacuo. The residue was pu-
rified by silica gel column chromatography (hexane–EtOAc) to give alcohol
Acknowledgments We are grateful to Masataka Nakanishi, Dr.
Tomikazu Kawano (our laboratory) and Dr. Patrick C. Reid (PeptiDream
Inc., Tokyo, Japan), for invaluable discussions. This paper is dedicated to
Prof. Tohru Fukuyama on the occasion of his 60th “Kanreki” birthday.
References and Notes
1) Present address: Chemistry Research Laboratories, Dainippon Sumi-
tomo Pharma Co., Ltd.; 3–1–98 Kasugade Naka, Konohana-ku, Osaka
554–0022, Japan.
2) Nicolaou K. C., Dai W.-M., Angew. Chem., Int. Ed. Engl., 30, 1387—
1416 (1991).
3) Nicolaou K. C., Dai W.-M., Tsay S. C., Estevez V. A., Wrasidlo W.,
Science, 256, 1172—1178 (1992).
4) Grissom J. W., Gunawardena G. U., Klingberg D., Huang D., Tetrahe-
dron, 52, 6453—6518 (1996).
1
10 (2.2 g, 65%) as a colorless solid. H-NMR (CDCl3) d: 2.57 (1H, br s),
4.27 (2H, br s), 5.71 (1H, s), 6.14 (1H, dd, Jꢂ8.0, 1.2 Hz), 6.80 (1H, ddd,
Jꢂ8.0, 7.6, 1.2 Hz), 7.17 (1H, ddd, Jꢂ8.0, 7.6, 1.2 Hz), 7.32—7.34 (3H, m),
7.49—7.51 (3H, m). 13C-NMR (CDCl3) d: 63.9, 87.3, 87.4, 116.9, 118.5,
122.3, 124.6, 128.0, 128.3, 129.7, 131.8, 145.1. IR (CHCl3) cmꢀ1: 3580,
3390, 2190. FAB-MS m/z: 233 (Mꢃ), 206 (MꢀOH)ꢃ.
5) Wang K. K., Chem. Rev., 96, 207—222 (1996).
6) Wenk H. H., Winkler M., Sander W., Angew. Chem. Int. Ed., 42, 502—
528 (2003).
7) Gredicˇak M., Jeric´ I., Acta Pharm., 57, 133—150 (2007).
8) Kar M., Basak A., Chem. Rev., 107, 2861—2890 (2007).
9) Miyawaki K., Suzuki R., Kawano T., Ueda I., Tetrahedron Lett., 38,
3943—3946 (1997).
10) Ikemoto C., Kawano T., Ueda I., Tetrahedron Lett., 39, 5053—5056
(1998).
11) Miyawaki K., Kawano T., Ueda I., Tetrahedron Lett., 39, 6923—6926
(1998).
12) Miyawaki K., Kawano T., Ueda I., Tetrahedron Lett., 41, 1447—1451
(2000).
13) Kawano T., Inai H., Miyawaki K., Ueda I., Tetrahedron Lett., 46,
1233—1236 (2005).
14) Kawano T., Inai H., Miyawaki K., Ueda I., Bull. Chem. Soc. Jpn., 79,
944—949 (2006).
15) Ueda I., Sakurai Y., Kawano T., Wada Y., Futai M., Tetrahedron Lett.,
40, 319—322 (1999).
16) Ueda I., Miyawaki K., Sugane, T., Sakurai Y., Wada Y., Futai M.,
Pharmazie, 55, 192—195 (2000).
Thiourea (11): Thiourea 11 was prepared from amine 10 (223 mg,
1.00 mmol) in 89% yield by a procedure similar to that employed for com-
pound 8. H-NMR (CDCl3) d: 3.70 (1H, s), 5.73 (1H, s), 7.18 (1H, ddd,
Jꢂ7.5, 7.1, 1.0 Hz), 7.22—7.34 (8H, m), 7.35 (1H, ddd, Jꢂ8.1, 7.8, 1.5 Hz),
7.40 (2H, ddd, Jꢂ8.1, 7.8, 1.2 Hz), 7.62 (1H, dd, Jꢂ8.1, 1.5 Hz), 7.65 (1H,
dd, Jꢂ7.8, 1.5 Hz), 8.50 (1H, s), 8.56 (1H, s). 13C-NMR (CDCl3) d: 62.1,
86.6, 87.3, 121.8, 125.0, 126.7, 127.0, 127.8, 128.0, 128.3, 128.7, 129.2,
131.6, 135.1, 136.0, 136.3, 180.0. IR (CHCl3) cmꢀ1: 3274, 2231, 1539.
FAB-MS m/z: 359 (MꢃH)ꢃ, 341 (MꢀOH)ꢃ.
Tetrahydropyranyl Ether (12): To a solution of alcohol 11 (348 mg,
0.970 mmol) in dichloromethane (10 ml) was added 3,4-dihydro-2H-pyran
(DHP, 0.26 ml, 2.9 mmol), pyridinium p-toluenesulfonate (PPTS, 24 mg,
0.10 mmol) at 0 °C. After being stirred at 35 °C for 3 h, the reaction was
quenched with saturated aq. NaHCO3 and diluted with chloroform. The or-
ganic layer was separated, washed with brine, dried over MgSO4 and evapo-
rated in vacuo. The residue was purified by silica gel column chromatogra-
phy (hexane–EtOAc) to give tetrapyranyl ether 12 (412 mg, 96%) as a color-
less solid. 1H-NMR (CDCl3) d: 1.26—1.83 (6H, m), 3.49 (1H, m), 3.73
(1/2H, m), 3.90 (1/2H, m), 4.44 (1/2H, m), 4.94 (1/2H, m), 5.65 (1/2H, s),
5.73 (1/2H, s), 7.16—7.40 (10H, m), 7.51 (1H, ddd, Jꢂ7.6, 5.6, 1.2 Hz),
7.55 (1H, ddd, Jꢂ7.8, 5.6, 1.2 Hz), 7.60 (1H, dd, Jꢂ7.6, 1.0 Hz), 7.84 (1/2H,
dd, Jꢂ7.8, 1.0 Hz), 7.88 (1/2H, dd, Jꢂ7.8, 1.0 Hz), 8.61 (1/2H, s), 8.67
(1/2H, s), 8.85 (1H, s). 13C-NMR (CDCl3) d: 18.7, 19.6, 24.8, 25.0, 25.2,
29.8, 30.0, 30.5, 61.9, 62.7, 63.2, 66.0, 84.8, 86.0, 86.4, 87.6, 94.4, 95.1,
96.5, 121.9, 122.1, 124.3, 125.4, 126.2, 126.9, 127.8, 128.0, 128.1, 128.3,
128.4, 128.6, 128.6, 128.7, 128.8, 129.1, 129.3, 129.5, 132.0, 136.4, 137.0,
1
17) Torikai K., Otsuka Y., Nishimura M., Sumida M., Kawai T., Sekiguchi
K., Ueda I., Bioorg. Med. Chem., 16, 5441—5451 (2008).
18) Although several aryl–yne–nitriles, whose C–N triple bond mimics the
C–C triple bond of enyne systems, were synthesized and the CA reac-
tions were examined, the reactions proved to disfavor the formation of
azafluorenols. See: Kimura H., Torikai K., Miyawaki K., Ueda I.,
Chem. Lett., 37, 662—663 (2008).
19) Gopalsamy A., Shi M., Boschelli D. H., Williamson R., Olland A., Hu