424
Russ.Chem.Bull., Int.Ed., Vol. 57, No. 2, February, 2008
Dzhavakhishvili et al.
Table 2. IR and 1H NMR spectra of compounds 4, 5, and 7
Comꢀ
pound
IR,
ν/cm–1
1H NMR,
δ (J/Hz)
4a
4b
4c
4d
5a
5b
3359 (N—H); 2852 (С(sp3)—H); 1.96—2.18 (m, 2 H); 2.52, 2.91 (both t, 2 H each, J = 5.9); 7.75 (t, 1 H, H(5)Ar(2)
,
1647 (C=O); 1528 (asꢀNO2);
1347 (sꢀNO2)
J = 8.2); 8.20 (d, 1 H, H(4)Ar(2), J = 8.2); 8.35—8.56 (m, 2 H, H arom.);
8.80 (s, 1 H); 8.89 (s, 1 H, H(4)); 12.83 (s, 1 H, NH)
3342 (N—H); 2968 (С(sp3)—H); 1.03 (s, 6 H, 2 Me); 1.33 (t, 3 H, CH3CH2, J = 7.0); 2.42, 2.80 (both s, 2 H each);
1647 (C=O); 1244 (CAr—O—C)
4.05 (q, 2 H, CH3CH2, J = 7.0); 6.99 (d, 2 H, H(3)Ar(2), H(5)Ar(2), J = 8.9);
7.81—8.02 (m, 3 H); 8.86 (s, 1 H, H(4)); 12.83 (s, 1 H, NH)
3418 (N—H); 2919 (С(sp3)—H); 2.35, 2.56 (both s, 3 H each, Me); 2.61—2.69 (m, 1 H); 2.76—3.18 (m, 3 H); 3.40—3.54
1650 (C=O); 1514 (C=N)
(m, 1 H); 3.72 (s, 3 H, MeO); 6.90 (d, 2 H, HAr(1), J = 8.5); 7.12—7.41 (m, 4 H,
H arom.); 7.63 (d, 2 H, HAr(2), J = 7.9); 8.79 (s, 1 H, H(4)); 12.87 (s, 1 H, NH)
3401 (N—H); 2929 (С(sp3)—H); 2.71—2.92, 3.02—3.25 (both m, 2 H each); 3.61—3.80 (m, 1 H); 6.18 (d, 1 H,
1643 (C=O); 748 (C—Cl)
J = 2.9); 6.38 (s, 1 H); 7.39—7.69 (m, 3 H, H arom.); 8.07 (d, 2 H, H arom.,
J = 8.4); 8.20 (s, 1 H, HTz); 8.88 (s, 1 H, H(4)); 12.97 (s, 1 H, NH)
2955 (С(sp3)—H); 2200 (CN);
1546 (C=O); 1505 (C=N)
0.94 (s, 6 H, 2 Me); 1.32—1.82 (m, 7 H); 2.10—2.18 (m, 3 H); 2.86—3.04 (m, 4 H);
7.47 (d, 2 H, H(3)Ar(2), H(5)Ar(2), J = 8.7); 7.80 (s, 1 H); 7.95 (d, 2 H, H(2)Ar(2)
H(6)Ar(2), J = 8.7); 8.13 (s, 1 H)
,
2956 (С(sp3)—H); 2220 (CN);
1551 (С=О); 1534 (asꢀNO2);
1374 (sꢀNO2)
1.30—1.80 (m, 6 H); 2.32—2.45, 2.49—2.65 (both m, 2 H each); 2.88—3.08 (m, 4 H);
3.10—3.24 (m, 1 H); 3.71 (s, 3 H, MeO); 6.84 (d, 2 H, H(3)Ar(1), H(5)Ar(1), J = 8.6);
7.22 (d, 2 H, H(2)Ar(1), H(6)Ar(1), J = 8.6); 7.73 (t, 1 H, H(5)Ar(2), J = 8.1);
8.00—8.28 (m, 3 H, H arom.); 8.38 (d, 1 H, H(6)Ar(2), J = 8.1); 8.74 (s, 1 H)
7a
7b
2956 (С(sp3)—H); 1663 (C=O);
1540 (C=N); 1229 (CAr—N)
0.96 (s, 6 H, 2 Me); 2.32—2.45 (m, 4 H); 7.44 (d, 2 H, HAr(3), J = 7.3);
7.51—7.76 (m, 5 H, H arom.); 8.03 (d, 2 H, H(2)Ar(2), H(6)Ar(2), J = 8.2);
8.24 (s, 1 H, HTz); 9.06 (s, 1 H, H(4))
2956 (С(sp3)—H); 1657 (C=O);
1541 (C=N); 1224 (CAr—N);
758 (C—Cl)
0.94 (s, 6 H, 2 Me); 2.41 (s, 4 H); 2.47 (s, 3 H, Me); 7.28 (d, 2 H, H(3)Ar(3),
H(5)Ar(3), J = 8.3); 7.41 (d, 2 H, H(2)Ar(3), H(6)Ar(3), J = 8.3); 7.52 (d, 2 H,
H(3)Ar(2), H(5)Ar(2), J = 8.6); 8.07 (d, 2 H, H(2)Ar(2), H(6)Ar(2), J = 8.6);
8.20 (s, 1 H, HTz); 9.04 (s, 1 H, H(4))
7c
7d
2955 (С(sp3)—H); 1664 (C=O);
1544 (C=N); 1232 (CAr—N)
0.95 (s, 6 H, 2 Me); 2.35 (s, 3 H, Me); 2.42 (s, 4 H); 2.54 (s, 3 H, Me);
7.29 (d, 2 H, H(3)Ar(2), H(5)Ar(2), J = 8.2); 7.38—7.58 (m, 4 H, H arom.);
7.64 (d, 2 H, H(2)Ar(2), H(6)Ar(2), J = 8.2); 8.92 (s, 1 H, H(4))
2853 (С(sp3)—H); 1654 (C=O);
1540 (C=N); 1274 (CAr—N);
774 (C—Cl)
1.90—2.11 (m, 2 H); 2.49—2.67 (m, 4 H); 3.83 (s, 3 H, MeO); 7.12 (d, 2 H,
H(3)Ar(3), H(5)Ar(3), J = 8.9); 7.35 (d, 2 H, H(2)Ar(3), H(6)Ar(3), J = 8.9);
7.53 (d, 2 H, H(3)Ar(2), H(5)Ar(2), J = 8.7); 8.07 (d, 2 H, H(2)Ar(2), H(6)Ar(2)
J = 8.7); 8.20 (s, 1 H, HTz); 9.04 (s, 1 H, H(4))
,
7e
2958 (С(sp3)—H); 1660 (C=O);
1542 (C=N); 752 (C—Cl)
1.21 (d, 6 H, 2 Me (Pri), J = 6.9); 2.33—2.47, 2.53—2.69 (both m, 1 H each, CH);
2.77—3.04 (m, 3 H); 3.38—3.52 (m, 1 H); 3.67 (s, 3 H, MeO); 6.82 (d, 2 H,
H(3)Ar(1), H(5)Ar(1), J = 8.7); 7.15 (d, 2 H, H(2)Ar(1), H(6)Ar(1), J = 8.7);
7.21—7.48 (m, 4 H); 7.53, 8.09 (both d, 2 H each, H arom., J = 8.6);
8.23 (s, 1 H, HTz); 9.08 (s, 1 H, H(4))
Note. In the 1H NMR spectra, Ar(1) is the aryl substituent in position 7 of 7,8ꢀdihydroquinolineꢀ2,5(1H,6H)ꢀdione, Ar(2) is the aryl
substituent in position 4 of the 1,3ꢀthiazole fragment, and Ar(3) is the aryl substituent in position 1 of 7,8ꢀdihydroquinolineꢀ
2,5(1H,6H)ꢀdione.
additional purification was required. It should be emphaꢀ
sized that in all these transformations, it is necessary to
prepare firstly 2ꢀdimethylaminomethylidenecyclohexaneꢀ
1,3ꢀdiones 2a—d by condensation of cyclohexaneꢀ1,3ꢀ
diones 1a—d with DMFDMA and use them in the folꢀ
lowing reactions without isolation. At the same time, mixꢀ
ing of all three reaction components (cyclohexaneꢀ1,3ꢀ
dione, DMFDMA, and (1,3ꢀthiazolꢀ2ꢀyl)acetonitrile) can
result in the formation of nitrile—DMFDMA adducts
that are inert to 1,3ꢀdicarbonyl compounds.5
Interestingly, the roomꢀtemperature reaction in the
presence of an equivalent amount of piperidine gave
piperidinium 2ꢀ[2ꢀ(4ꢀarylꢀ1,3ꢀthiazolꢀ2ꢀyl)ꢀ2ꢀcyanoꢀ
ethenyl]ꢀ3ꢀoxocyclohexꢀ1ꢀenꢀ1ꢀolates 5a,b (see Tables 1, 2).
Although such salts have been isolated earlier,5,7—10 we
believe that their reaction potential is still to be disꢀ
covered. Further heating of enolates 5 in acetic acid
resulted in their cyclization into 7,8ꢀdihydroquinolineꢀ
2,5(1H,6H)ꢀdiones 4, probably via the Dimrothꢀlike
rearrangement.5