C O M M U N I C A T I O N S
D2O, respectively (with units of µs-1).14 No values were calculated
based on neodymium luminescence owing to the large variations
in lifetime with ligand structure in such systems.2 The photophysical
properties of the lanthanide complexes are shown in Table 1.
conceivably as a result of steric crowding in the tetrametallic
complex inhibiting access by solvent to the metal center; indeed
qYb for Yb2.7 is the same as qYb for 9, while qYb for Yb2.5 is within
error of that for 8.
Table 1. Photophysical Properties of the Complexesa
compound
λ
em/nm
τH2O/ns
τD2O/ns
qYb
Nd2.4
Yb2.4
Nd2.5
Yb2.5
Nd2.7
Yb2.7
8
8
9
9
1055
980
1340
980
1055
980
980
1340
980
1340
98
1620
112
1410
102
1600
1950
140
1750
160
301
4510
355
4020
334
5310
5120
320
5170
400
0.3
0.4
0.3
0.2
0.3
Figure 1. Time-gated emission spectra of D2O solutions containing 8
(dashed line) and 9 (solid line): (a) in the period between 500 and 1000 ns
after the laser pulse; (b) from 3 to 6 µs after the laser pulse, normalized at
980 nm.
a All complexes exhibited emission following excitation at 337 nm.
For [Ln.5]- and 8 and 9, excitation at 420 nm gave lifetimes within
error of those given in the table.
The stability of systems such as these in the forcing conditions
inherent to diazotization reactions is further evidence for the kinetic
inertness of such complexes. This approach allows not only the
preparation of heterometallic systems containing different lanthanide
ions but also the simultaneous incorporation of a sensitizing
chromophore.
Having prepared and studied bimetallic systems, we turned our
attention to the preparation of heterotetrametallic arrays. Scheme
2 shows the synthetic strategy employed. The bis-macrocycle 7
was prepared using an established procedure as shown in Scheme
2.15 Complexation with the lanthanide triflate yielded the bimetallic
complexes Ln2.7. Reaction of Ln2.7 with sodium nitrite in dilute
hydrochloric acid followed by addition of [Ln′2.4]- yielded the
tetrametallic complexes 8 and 9.
Acknowledgment. The authors acknowledge support from the
Universities of Manchester, Oxford, and Durham and from the
EPSRC.
Scheme 2. Synthesis of Tetrametallic Complexesa
Supporting Information Available: Experimental procedures and
characterization data for synthesis of compounds and complexes,
absorption and (time-resolved) emission spectra of complexes. This
References
(1) Merbach, A. E. ; Toth, E. In ComprehensiVe Coordination Chemistry, 2nd
ed.; Ward, M. D., Ed.; Elsevier: 2004; Vol. 9, Chapter 19. Parker, D.;
Dickins, R. S.; Puschman, H.; Crossland, C.; Howard, J. A. K. Chem. ReV.
2002, 102, 1977.
(2) Hemilla, I. A. Applications of fluorescence in immunoassays; Wiley
Interscience: 1991. Faulkner, S.; Burton-Pye, B. P.; Pope, S. J. A. Appl.
Spectrosc. ReV. 2005, 40, 1. Bunzli, J. C. G.; Comby, S.; Chauvin, A. S.;
Vandevyer, C. D. B. J. Rare Earths 2007, 25, 257.
(3) Beeby, A.; Clarkson, I. M.; Faulkner, S.; Botchway, S.; Parker, D.; Williams,
J. A. G.; Parker, A. W. J. Photochem. Photobiol., B 2000, 57, 83.
Charbonniere, L.; Ziessel, R.; Guardigli, M.; Roda, A.; Sabbatini, N.;
Cesario, M. J. Am. Chem. Soc. 2001, 123, 2436. Weibel, N.; Charbonniere,
L. J.; Guardigli, M.; Roda, A.; Ziessel, R. J. Am. Chem. Soc. 2004, 126,
4888.
(4) Aime, S.; Botta, M.; Terreno, E. AdV. Inorg. Chem. 2005, 57, 173. Caravan,
P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. ReV. 1999, 99,
2293.
(5) Bu¨nzli, J.-C. G. Acc. Chem. Res. 2006, 39, 53. Bu¨nzli, J.-C. G.; Piguet, C.
Chem. Soc. ReV 2005, 34, 1048.
a Reagents and Conditions: (a) Cs2CO3, 1, MeCN, reflux, 72 h; (b) tfa,
CH2Cl2, 48 h; (c) Ln(OTf)3, MeOH, 48 h; (d) N2H4, Pd/C, MeOH, 1 h; (e)
NaNO2, HCl, Ln′2.4, NaOH, 0 °C, 0.5 h.
(6) Faulkner, S.; Perry, W. S.; Natrajan, L. S.; Sykes, D. Dalton Trans. 2009,
3890. Gunnlaugsson, T.; Leonard, J. P. Chem. Commun. 2005, 3114.
(7) Alpha, B.; Lehn, J. M.; Mathis, G. Angew. Chem., Int. Ed. Engl. 1987, 26,
266. Beeby, A.; Faulkner, S.; Parker, D.; Williams, J. A. G. J. Chem. Soc.,
Perkin Trans. 2 2001, 1268.
(8) Beeby, A.; Faulkner, S.; Williams, J. A. G. Dalton Trans. 2002, 1918.
(9) Silva, F. R. G. E.; Malta, O. L.; Reinhard, C.; Gudel, H. U.; Piguet, C.;
Moser, J. E.; Bunzli, J. C. G. J. Phys. Chem. A 2002, 106, 1670.
(10) Koullourou, T.; Natrajan, L. S.; Bhavsar, H.; Pope, S. J. A.; Feng, J.;
Narvainen, J.; Shaw, R.; Scales, E.; Kauppinen, R.; Kenwright, A. M.;
Faulkner, S. J. Am. Chem. Soc. 2008, 130, 2178.
(11) Pope, S. J. A.; Faulkner, S. J. Am. Chem. Soc. 2003, 125, 10526.
(12) Dadabhoy, A.; Faulkner, S.; Sammes, P. G. J. Chem. Soc., Perkin Trans.
2 2000, 2359.
(13) Pope, S. J. A.; Heath, S. L.; Kenwright, A. M.; Faulkner, S. Chem. Commun.
2003, 1550.
Both 8 and 9 were found to be luminescent; time-gated emission
spectra are shown in Figure 1. The short-lived signals arising from
neodymium emission dominate the early part of the luminescence
spectrum (Figure 1a), and the ratio of the peaks at 1340 and 1055
nm for the two isomers clearly indicates that the neodymium centers
are in different environments in the different complexes. Similarly,
the later part of the luminescence (Figure 1b) shows the ytterbium
signal after the overlapping neodymium emission has decayed. In
2
this case the fine structure of the F5/2-2F7/2 transition indicates
differences in the ytterbium environment between 8 and 9.
Luminescence lifetimes and values for qYb are shown in Table 1.
In this case lifetime measurements are less informative: 8 and 9
both exhibit low values for qYb despite the differences in ligand
denticity in the octadentate and heptadentate sites in the molecule,
(14) Beeby, A.; Clarkson, I. M.; Dickins, R. S.; Faulkner, S.; Parker, D.; de
Sousa, A. S.; Williams, J. A. G. J. Chem. Soc., Perkin Trans. 2 1999, 493.
(15) Placidi, M. P.; Natrajan, L. S.; Sykes, D.; Kenwright, A. M.; Faulkner, S.
HelV. Chim. Acta 2009, in press (doi: 10.1002/hlca.200900141).
JA904362F
9
J. AM. CHEM. SOC. VOL. 131, NO. 29, 2009 9917