C O M M U N I C A T I O N S
Table 2. Isotopic Labeling Studies Exclude Hydroformylation
in reductive coupling at the 2-position to furnish products of
hydroxymethylation that contain all-carbon quaternary centers. This
process represents an alternative to 1,3-diene hydroformylation, for
which efficient regioselective catalytic systems remain undeveloped.
Acknowledgment. Acknowledgment is made to the Robert A.
Welch Foundation, NIH-NIGMS (RO1-GM069445), and the
FRIAS for partial support of this research.
Pathways and Corroborate Reversible Diene Hydrometallationa
(CD2O)n + i-PrOH
(CH2O)n + i-PrOH-d8
(CD2O)n + i-PrOH-d8
Ha (5% 2H)
Ha (51.5% 2H)
Ha (17% 2H)
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of
Hb (100% 2H)
Hc (16.5% 2H)
Hd (12% 2H)
He (14% 2H)
Hb (0% 2H)
Hb(100% 2H)
Hc (76.5% 2H)
Hd (58.5% 2H)
He (57.5% 2H)
Hc (46% 2H)
Hd (51% 2H)
He (50% 2H)
References
(1) For selected reviews on hydroformylation, see: (a) Weissermel, K.; Arpe,
H.-J. Industrial Organic Chemistry; Wiley-VCH, Weinheim, Germany,
2003; pp 127-144. (b) Rhodium Catalyzed Hydroformylation; van Leeu-
wen, P. W. N. M., Claver, C., Eds.; Kluwer: Dordrecht, The Netherlands,
2000. (c) Breit, B.; Seiche, W. Synthesis 2001, 1.
a The extent of 2H incorporation was determined using 1H and 2H
NMR spectroscopy. The indicated values represent averages of two runs.
Scheme 1. Plausible Catalytic Mechanism Accounting for the
Results of Isotopic Labeling
(2) Hydroformylation of conjugated dienes typically occurs in low yield to
provide complex mixtures. See: (a) Clement, W. H.; Orchin, M. Ind. Eng.
Chem. Prod. Res. DeV. 1965, 4, 283. (b) Fell, B.; Bahrmann, H. J. Mol. Catal.
1977, 2, 211. (c) Bahrmann, H.; Fell, B. J. Mol. Catal. 1980, 8, 329. (d)
Botteghi, C.; Branca, M.; Saba, A. J. Organomet. Chem. 1980, 184, C17. (e)
van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Mol. Catal. 1985, 31, 345. (f)
Chalchat, J. C.; Garry, R. P.; Lecomte, E.; Michet, A. FlaVour Fragrance J.
1991, 6, 178. (g) Bertozzi, S.; Campigli, N.; Vitulli, G.; Lazzaroni, R.; Salvadori,
P. J. Organomet. Chem. 1995, 487, 41. (h) Horiuchi, T.; Ohta, T.; Nozaki, K.;
Takaya, H. Chem. Commun. 1996, 155. (i) Horiuchi, T.; Ohta, T.; Shirakawa,
E.; Nozaki, K.; Takaya, H. Tetrahedron 1997, 53, 7795. (j) Barros, H. J. V.;
Hanson, B. E.; dos Santos, E. N.; Gusevskaya, E. V. Appl. Catal., A 2004, 278,
57. (k) Barros, H. J. V.; da Silva, J. G.; Guimara˜es, C. C.; dos Santos, E. N.;
Gusevskaya, E. V. Organometallics 2008, 27, 4523.
(3) For selected reviews of C-C bond-forming hydrogenation and transfer
hydrogenation, see: (a) Ngai, M.-Y.; Kong, J. R.; Krische, M. J. J. Org.
Chem. 2007, 72, 1063. (b) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische,
M. J. Acc. Chem. Res. 2007, 40, 1394. (c) Bower, J. F.; Kim, I. S.; Patman,
R. L.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 34.
(4) For Ru-catalyzed C-C bond-forming transfer hydrogenation, see: Dienes: (a)
Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130,
6338. (b) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc.
2008, 130, 14120. Allenes: (c) Ngai, M.-Y.; Skucas, E.; Krische, M. J.
Org. Lett. 2008, 10, 2705. (d) Skucas, E.; Zbieg, J. R.; Krische, M. J. J. Am.
Chem. Soc. 2009, 131, 5054. Alkynes: (e) Patman, R. L.; Chaulagain, M. R.;
Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066. (f)
Williams, V. M.; Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron
2009, 65, 5024. Enynes: (g) Patman, R. L.; Williams, V. M.; Bower, J. F.;
Krische, M. J. Angew. Chem., Int. Ed. 2008, 47, 5220.
(5) For related catalytic C-C couplings that occur by way of nucleophilic Ru
π-allyls, see: (a) Tsuji, Y.; Mukai, T.; Kondo, T.; Watanabe, Y. J.
Organomet. Chem. 1989, 369, C51. (b) Kondo, T.; Ono, H.; Satake, N.;
Mitsudo, T.-a.; Watanabe, Y. Organometallics 1995, 14, 1945. (c) Kondo,
T.; Hiraishi, N.; Morisaki, Y.; Wada, K.; Watanabe, Y.; Mitsudo, T.-a.
Organometallics 1998, 17, 2131. (d) Yu, C.-M.; Lee, S.; Hong, Y.-T.; Yoon,
S.-K. Tetrahedron Lett. 2004, 45, 6557. (e) Omura, S.; Fukuyama, T.;
Horiguchi, J.; Murakami, Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094.
(6) For selected reviews of Ru-catalyzed C-C coupling, see: (a) Trost, B. M.;
Toste, F. D.; Pinkerton, A. B. Chem. ReV. 2001, 101, 2067. (b) Kondo, T.;
Mitsudo, T.-a. Curr. Org. Chem. 2002, 6, 1163. (c) De´rien, S.; Monnier,
F.; Dixneuf, P. H. Top. Organomet. Chem. 2004, 11, 1.
(7) For catalytic intermolecular diene-aldehyde reductive coupling, see: (a)
Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998,
120, 4033. (b) Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron
Lett. 1998, 39, 4543. (c) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata,
K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999,
38, 397. (d) Kimura, M.; Shibata, K.; Koudahashi, Y.; Tamaru, Y.
Tetrahedron Lett. 2000, 41, 6789. (e) Kimura, M.; Ezoe, A.; Tanaka, S.;
Tamaru, Y. Angew. Chem., Int. Ed. 2001, 40, 3600. (f) Loh, T.-P.; Song,
H.-Y.; Zhou, Y. Org. Lett. 2002, 4, 2715. (g) Sato, Y.; Sawaki, R.; Saito,
N.; Mori, M. J. Org. Chem. 2002, 67, 656. (h) Jang, H.-Y.; Huddleston,
R. R.; Krische, M. J. Angew. Chem., Int. Ed. 2003, 42, 4074. (i) Bareille,
L.; Le Gendre, P.; Mo¨ıse, C. Chem. Commun. 2005, 775. (j) Kimura, M.;
Ezoe, A.; Mori, M.; Iwata, K.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128,
8559. (k) Yang, Y.; Zhu, S.-F.; Duan, H.-F.; Zhou, C.-Y.; Wang, L.-X.;
Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 2248. (l) Sato, Y.; Hinata, Y.;
Seki, R.; Oonishi, Y.; Saito, N. Org. Lett. 2007, 9, 5597.
conditions (Table 2). The observed patterns of deuterium incorpora-
tion exclude pathways involving ruthenium-catalyzed hydroformy-
lation,12 potentially enabled through decomposition of paraform-
aldehyde to form syngas (CO/H2). Rather, these data are consistent
with a scenario involving diene hydrometalation-ꢀ-hydride elimi-
nation at different positions of the diene by way of intermediates
A-D. Formaldehyde addition from the primary σ-allyl haptomer
derived from B through a chairlike transition structure is postulated
to provide isomers 3 (Scheme 1). As previously discussed, strain
associated with the pseudoaxial orientation of large diene 2-sub-
stituents appears to disfavor formation of isomers 2. In contrast,
the transition structure en route to isomers 3 involves pseudoequa-
torial orientation of the diene 2-substituents and projection of these
groups into open volumes of space.
Formaldehyde hemiacetals mediate reductive coupling in com-
1
petition with 2-propanol. H NMR analyses of the crude reaction
mixtures reveal both acetone and isopropyl formate. Additionally,
in the absence of 2-propanol but under otherwise standard condi-
tions, diene 1g is converted to formate esters 2g-formate and
3g-formate in 42% isolated yield as a 1:4 ratio of regioisomers,
respectively. The difference in crystallinity and, hence, solubility
between paraformaldehyde and deuterio-paraformaldehyde may
account for the observed drop in deuterium incorporation for Ha
upon use of deuterio-paraformaldehyde and 2-propanol-d8 instead
of paraformaldehyde and 2-propanol-d8.
(8) For a recent review encompassing Ni-catalyzed diene-aldehyde reductive
coupling, see: Kimuara, M.; Tamaru, Y. Top. Curr. Chem. 2007, 279, 173.
(9) For isomerization of Ru π-allyls, see ref 5e and: Xue, P.; Bi, S.; Sung,
H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G. Organometallics 2004, 23, 4735.
(10) Dobson, A.; Robinson, S. R.; Uttley, M. F. J. Chem. Soc., Dalton Trans.
1974, 370.
(11) Optically enriched 3g was previously prepared in 10 steps via enzymatic
resolution (see: Fadel, A.; Vandromme, L. Tetrahedron: Asymmetry 1999,
10, 1153. ). With the use of (R)-CatASium T2 as the ligand instead of
dppb, optically enriched 3g (57% ee) is accessible in only two steps.
(12) For a review of Ru-catalyzed alkene hydroformylation, see: Kalck, P.; Peres,
Y.; Jenck, J. AdV. Organomet. Chem. 1991, 32, 121.
In summary, ruthenium-catalyzed transfer hydrogenation of
2-substituted dienes in the presence of paraformaldehyde results
JA904124B
9
J. AM. CHEM. SOC. VOL. 131, NO. 30, 2009 10367